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Abstract

We analyze the contagious propagation of jumps among international stock market
indices, using a rich panel of high-frequency stock and options data (692,892 option
contracts) over the period 2006–2015. We propose a multivariate option pricing
model designed to allow for time and space amplification of jumps in option markets.
We develop a semi-parametric estimation procedure, which employs a continuum of
moment conditions in GMM with implied states and non-parametric high-frequency
spot volatility estimation. A partial-information approach is introduced to reduce the
computational complexity arising in the multivariate setting. Asymptotic properties
of our estimators are derived and their finite-sample performance is analyzed. We
find statistical evidence of jump contagion both within and between stock market
indices. Our results reveal that jump contagion from the US to the UK is more
pronounced than vice versa, whereas the jump contagion effects between the US
and Germany stand on equal footing. We illustrate the statistical and economic
importance of capturing jump contagion for risk management, option pricing, and
scenario analysis. We show that accounting for jump contagion, employing scenarios
based on the Global Financial Crisis, leads to an increase of capital requirements in
the UK from 6% to 9% for each unit invested.
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1 Introduction

Intricate linkages exist between international financial markets. Shocks to financial markets

tend to propagate rapidly from one market to the next, potentially amplifying the initial

shock via dynamic feedback loops. Such contagious amplification over time and in space

(across markets) has important implications for risk management and scenario analysis,

valuation and hedging, and portfolio choice and international diversification.

Option markets provide a unique laboratory to analyze these contagion effects. A

panel of option price data, observed over time for different markets, strike prices (i.e.,

exercise prices) and maturities (i.e., expiry dates), embeds a wealth of information on the

persistence, direction, and contagious nature of shocks.1 Figure 1 provides an example of

the propagation of shocks among the US (S&P 500) and UK (FTSE 100) option markets at

the peak of the Global Financial Crisis of 2008. Panel (a) illustrates the interplay between

the cascades of declines in the two underlying stock indices, starting with the initial drop in

the US; and Panel (b) shows the reflection in option-implied volatilities for the two markets.

The figures visualize in particular that the implied volatility slice for short maturity options

on the UK index catches up with the US implied volatility counterpart by October 8, 2008,

and even outruns it in terms of its steepness by the end of what constitutes the worst week

in US stock markets since 1929.

Extracting time and space amplification features from options panels, however, consti-

tutes a challenging statistical problem. This applies in particular to jump contagion, which

refers to possibly asymmetric, feedback amplification effects between large moves in asset

markets, leading to jump clusters in time and space. The challenges arise from the latency

of the state variables—jump intensities and stochastic volatilities—in option pricing; the

multitude of dimensions—time-series, maturity, moneyness (i.e., strike-to-price ratio) and

1For standard options terminology used in the sequel, we refer to the glossary in Hull (2021).
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Figure 1: Contagion among the US and UK option markets, October 3–10, 2008

(a) Stock market indices

(b) Option-implied volatilities

Note: Panel (a) plots the E-Mini S&P 500 stock market futures index (S&P) and the FTSE 100 stock market index (FTSE),
both scaled to 100 at the start of the sample. The observation frequency is 5 minutes, and trading times are converted to
UTC (coordinated universal time), with October 4, 2008 (Saturday) omitted from the timeline. For the US futures index,
the active trading periods (13:30–20:15 UTC) are highlighted in dark gray, while the remaining trading times are displayed in
light gray. Panel (b) plots short-maturity Black-Scholes implied volatilities for the E-Mini S&P 500 stock market futures index
options (S&P) and the FTSE 100 stock market index options (FTSE), against the moneyness level (i.e., the strike-to-price
ratio). The days to maturity is indicated in the legends. The option prices are collected in the interval 14:03–14:05 UTC.
More details are provided in Section 3.
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cross-sectional—that play a role; and the subtlety of the features—not just occurrence of

but contagion among jumps—we wish to explore. In this paper, we develop a statistical

approach that exploits a rich, laboriously constructed and synchronized, panel of stock and

options data to estimate a multivariate option pricing model designed to allow for, but not

superimpose, time and space amplification of jumps.

We formulate our model under both the physical and the risk-neutral probability

measures. The risk-neutral specification enables us to infer the unobserved state vari-

ables of our model by implying the parameter-dependent latent state variables from the

panel of option prices. These are ingredients in an implied-state GMM approach with a

continuum of moments (C-GMM) to identify the parametric components of our multivari-

ate semi-martingale model—the drift and jump components. We treat the time-varying

spot volatility components non-parametrically, by equating them to jump-robust estimates

obtained from high-frequency data over short periods of time to facilitate robust identifica-

tion of our rich model. This allows us to study, as is typical in classical GMM, a partially

specified parametric model that only delineates a subset of statistical relationships that

are of particular interest, while benefiting from the efficiency advantages of C-GMM. To

reduce the computational complexity of the method, we introduce a partial-information

approach, somewhat similar to the limited-information estimators considered by Singleton

(2001). We analyze the asymptotic properties of our partial-information implied-state C-

GMM procedure, and provide standard errors that account for the effect of implied-state

moments on estimation uncertainty. Monte Carlo simulations indicate that our criterion

function embodies sufficient information to identify the model parameters, yielding a good

finite-sample performance.

We use these statistical tools to analyze a panel of high-frequency stock and options

data for the UK (FTSE 100), Germany (DAX 30) and the US (S&P 500), covering January

2006 to August 2015 and containing 692,892 option contracts. Our findings can be sum-
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marized as follows. First, we find significant evidence of both time and space amplification

of jumps for all three markets. Second, our results reveal that jump contagion from the

US to the UK is more pronounced than vice versa, in agreement with conventional wis-

dom that the US plays a “leading role” in international financial markets. Third, we find

that jump contagion among the US and Germany is on equal footing for both markets.

This remarkable finding may be explained by the fact that the German index serves as a

proxy for the broader Eurozone market, which has played an important role in the financial

crises of the decade we analyze. Furthermore, we demonstrate the statistical and economic

importance of jump contagion in risk characteristics of log-return distributions, prices of

multi-index options, and implied volatility dynamics for the S&P 500 and FTSE 100. We

show e.g., that, when translated into capital requirements, accounting for jump contagion,

using scenarios based on the Global Financial Crisis, amounts to an increase in required

capital from 6% to 9% for each unit invested in the FTSE 100 index.

Our work is related to the literature studying the international transmission of equity

shocks in the form of jumps, which is relatively small compared to the vast literature

on international asset return and volatility spillovers; see Aı̈t-Sahalia, Cacho-Diaz, and

Laeven (2015), and also Errais, Giesecke, and Goldberg (2010) and Aı̈t-Sahalia, Laeven,

and Pelizzon (2014) who analyze jump contagion in credit defaults. High-frequency tests

for common or mutually exciting jumps are developed in Jacod and Todorov (2009) and

Dungey, Erdemlioglu, Matei, and Yang (2018); see also Aı̈t-Sahalia and Xiu (2016). An even

smaller literature—most closely related to our work—analyzes jump propagation through

the lens of option markets. Andersen, Fusari, and Todorov (2020) consider the pricing of

index options in separate markets, and find a large coherence across markets with respect

to their left tail risk. Bakshi, Carr, and Wu (2008) investigate a genuinely multi-country

stochastic discount factor using currency options, allowing for global and country-specific

diffusion and jump risk factors. Kokholm (2016) considers a multivariate option pricing
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model with a self- and/or cross-exciting jump component, under a risk-neutral specification.

He applies it to sectoral indices in one market using a calibration technique. To our best

knowledge, this paper is the first to analyze jump contagion among international stock

market indices using the laboratory of option panel data.

Our statistical approach is inspired by the option-implied-state GMM approach of

Pan (2002), and the C-GMM approach of Carrasco and Florens (2000, 2002) and Carrasco,

Chernov, Florens, and Ghysels (2007). Different from this existing literature, our approach

is semi-parametric in nature, mitigates the computational complexity of multivariate C-

GMM using a partial-information approach, and takes estimation uncertainty from state-

implied moments into account both formally in asymptotic analysis and numerically when

computing standard errors.

This paper is organized as follows. Section 2 describes the model. Section 3 describes

the data. Section 4 develops the estimation procedure. In Section 5 we present our empirical

analysis. Conclusions are in Section 6. Further details on the model specification, data

selection and processing, the estimation procedure, and data analysis are provided in four

online appendices provided as supplementary material. Computer code to implement the

procedures developed in this paper is available from a GitHub repository.2

2 Model Specification

This section presents our multivariate continuous-time option pricing model with contagious

time and space amplification. It embeds the mutually exciting jump process proposed

in Aı̈t-Sahalia et al. (2015) to characterize the stock index dynamics in m economies.

Unlike contagion models of multivariate stock index returns, modeling contagion among

option prices requires extension of the pricing kernel. Therefore, we propose a class of

2https://github.com/evladimirov/Jump-Contagion/.
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country-level risk-neutral probability measures that jointly accommodate arbitrage-free

international stock price dynamics with mutually exciting jumps. Next, we describe the

semi-nonparametric approximation adopted in our model.

2.1 Index Return Dynamics and Risk-Neutral Measures

We fix a filtered probability space (Ω,F , {Ft}t≥0,P) and consider a model of index return

dynamics for m economies equipped with mutually exciting jump processes. We assume

that each of the markets is characterized by a stock market index denominated in the local

currency with the following dynamics:

dSi,t
Si,t

=
(
ri,t − qi,t + ηiξ

2
i,t + (E[Ji]− EQi [Ji])λi,t

)
dt+ ξi,tdWi,t + Ji,tdNi,t − E[Ji]λi,tdt, (1)

for i = 1, . . . ,m, where ri,t and qi,t are deterministic risk-free rates and dividend yields;

Wi,t are standard Brownian motions, correlated with (possibly time-varying) pairwise in-

stantaneous correlation coefficients %ij,t; ξi,t are general, adapted volatility processes; and

Ji,tdNi,t are compound Hawkes jump processes with serially and cross-sectionally indepen-

dent random variables Ji,t governing the jump sizes, having generic law FJi and mean E[Ji]

(under P). By EQi [Ji] we denote the expected jump size in market i under the equivalent

risk-neutral probability measure Qi specific to market i, as defined below. Throughout,

stochastic processes, expectation operators, and parameters without superscript are under-

stood to be defined with respect to the physical probability measure P.

The Hawkes (1971) jump process, also known as the mutually exciting jump process,

is a main ingredient of our model, allowing us to capture both jump contagion across

markets and clustering of jumps in time within each market.3 More specifically, we define

3Originally proposed to model epidemics, Hawkes processes have also been used to model seismic exci-
tation since Ogata (1988).
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the multivariate Hawkes jump process through m counting processes Ni,t, one for each of

the m markets, such that each counting process is characterized by its conditional jump

intensity process λi,t, defined by

λi,t = lim
s↓0

E [Ni,t+s −Ni,t|Ft−]

s
. (2)

Unlike the Poisson process, the jump intensity of the Hawkes process is stochastic with

dynamics (under exponential decay) given by

dλi,t = κi(λi − λi,t)dt+
m∑
j=1

δijdNj,t, i = 1, . . . ,m. (3)

In this specification, a jump event in equity index j causes the intensity λi,t to increase

by δij ≥ 0, followed by an exponential decay towards λi > 0 at a rate κi > 0. The

parameters δij dictate the self-excitation (for i = j) and cross-excitation (for i 6= j) effects,

generating two key features of the model: first, a jump event increases the probability of

subsequent jump events in the same index, leading to jump clustering in time; second, a

jump event in one market increases the probability of jumps in other markets, entailing

jump propagation in space. Note that, following a jump event in one market, the jump

intensities in other markets respond instantaneously, thereby directly making jumps much

more likely. Note also that these time and space amplification features are probabilistic and

not superimposed, i.e., not certain to occur. The paired vectors (N, λ) jointly constitute a

Markov process.

Our model captures jump contagion, i.e., the propagation over time and across markets

of large moves in stock market indices. Sample paths from the model may exhibit nearly

concurrent jumps in the different markets. By design, the model does not allow for large

common exogenous shocks (it does allow for Brownian correlation), in line with the existing
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literature on “contagion” in economics and finance as “propagation” rather than common

shocks. Information, also common exogenous information, needs time to spread and get

reflected in the different markets. Our model captures these cascading effects. To distin-

guish in formal statistical tests between contagious jumps and large common exogenous

shocks would require a different modeling framework and ultra-high-frequency analysis.

In addition to the risk-free interest rate ri,t and dividend yield qi,t in economy i, the

drift term in (1) contains two risk-premium components. The diffusive risk premium ηiξ
2
i,t

is akin to the risk-return trade-off occurring in the capital asset pricing model (CAPM):

ηi represents the additional expected return per unit of diffusive (“Brownian”) variance

ξ2
i,t. The jump risk premium (E[Ji]− EQi [Ji])λi,t represents the additional expected return

under the physical measure (relative to the risk-neutral measure), needed to compensate

for bearing jump risk. The last term in (1) is the compensator for the jump component;

the compensated jump component is a local martingale. Our model specification allows

for, possibly time-varying, correlations between the Brownian motions. However, in the

presence of mutually exciting jumps, the contribution of the Brownian correlation to the

realized correlation is swamped in crisis episodes, even if the Brownian correlation increases

during such time periods, and therefore it plays only a secondary role.

As is common in the literature (e.g., Pan (2002), Broadie, Chernov, and Johannes

(2007)), we assume the relative jump sizes Ji,t, i = 1, . . . ,m to be independent log-normal

random variables. Specifically, conditional upon a jump event in market i, the equity price

jumps from Si,t− to Si,t = Si,t− exp(Zi,t), with Zi,t ∼ N (µi, σ
2
i ). Under this parametrization,

the relative jump size in index i is Ji,t = exp(Zi,t) − 1, with mean E[Ji,t] = exp(µi +

1
2
σ2
i ) − 1. When the mean parameters (i.e., µi) are estimated at negative values, as is

the case in our data analysis, this entails that negative jumps in our model occur more

frequently, and are more contagious, than positive jumps. We also assume that the vector

of stacked jump sizes Zt, vector of Brownian motions Wt, and vector of jump processes
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Nt are mutually independent. Importantly, this model admits a generalized affine jump-

diffusion representation as defined in Appendix B of Duffie, Pan, and Singleton (2000).

The sources of uncertainty stemming from the random jumps in our model render each

market i, consisting of the equity index, a finite number of options on that index and a

money market account, incomplete. Therefore, the stochastic discount factor for each of the

markets is not unique. To formulate our risk-neutral pricing model, we focus on candidate

pricing kernels that keep the joint dynamics of the log-equity index and the jump intensity

process for each market i, under the equivalent risk-neutral probability measure Qi, within

the generalized affine jump-diffusion class. We provide further details on the measure

change in Appendix A.1, formally establishing in particular that the pricing kernels thus

specified rule out arbitrage opportunities within each market as well as internationally.

The resulting model under Qi may be represented as

dSi,t
Si,t

= (ri,t − qi,t) dt+ ξi,tdW
Qi
i,t + Ji,tdNi,t − EQi [Ji]λi,tdt, (4)

for i = 1, . . . ,m, where dWQi
i,t = dWi,t + ηiξi,tdt, with WQi

i,t a standard Brownian motion

under Qi. The pairwise instantaneous correlation coefficients %ij,t between the Brownian

motions are preserved under each of the risk-neutral measures. The distribution of the

jump size random variables Ji,t = eZi,t − 1 is of the same translated log-normal type under

Qi as under P, but with possibly different parameters. We assume that only the mean

parameters are different under the physical and risk-neutral specifications, i.e., σQi
i ≡ σi,

as in the univariate model of Pan (2002). The assumption of equal jump size variances

under both measures is needed for the identification of the jump size parameters. As a

consequence, the jump risk premium (E[Ji] − EQi [Ji])λi,t is generated by the difference

between µi and µQi
i .4

4Our specification of the pricing kernel sets the jump-timing risk premium to zero, so that the dynamics
of the jump intensity processes in (3), and in particular the parameters κi, λi and δij , are the same under
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2.2 Semi-Nonparametric Approximate Index Return Dynamics

In the formulation of the model, the diffusive volatility processes ξi,t have not yet been

specified. In principle, they could be modelled using a parametric stochastic volatility spec-

ification. Alternatively, we adopt a semi-nonparametric approximation for the index return

dynamics using nonparametric estimates of the spot volatilities ξi,t. Such an approximation

leads to robust pricing of close-to-maturity options, allowing inference to be focused on the

latent jump intensity dynamics and jump sizes. Moreover, a fully parametric version of

the model, including a stochastic volatility specification, is prone to model misspecification

and identification problems, especially in a multivariate setting; the semi-nonparametric

approach considerably reduces these complications.

As in the univariate setting of Andersen, Fusari, and Todorov (2017), we use an approx-

imate representation of the stock index process with constant spot volatility and a constant

dividend yield and interest rate. Under the equivalent martingale measures Qi, we define

the approximate processes S̃Qi
i,s , i = 1, . . . ,m for s ∈ [t, T ] (the time period between pricing

and expiration of the option) as follows:


dS̃Qi

i,s

S̃Qi
i,s

= (ri,t − qi,t)ds+ vi,sdW
Qi
i,s + Ji,sdNi,s − EQi [Ji]λi,sds, s ∈ [t, T ],

vi,s = ξi,t1{t≤s≤T}, S̃Qi
i,t = Si,t.

(5)

In other words, the spot volatility vi,s is taken to be constant and equal to ξi,t (the true

spot volatility at time t) over the interval s ∈ [t, T ], and the approximate process S̃Qi
i,s is

initialized at the true index price Si,t at time t. We also refer to the insightful work of

Medvedev and Scaillet (2007, 2010), who consider a small time-to-maturity asymptotic

approximation of the implied volatility function for stochastic volatility jump-diffusions.

This approximation is reasonable for pricing short-dated options because under the

P and Qi; see Appendix A.1 for details.
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risk-neutral measures, the stochastic volatility process usually exhibits slow mean reversion.

For example, Pan (2002) finds the mean-reversion parameter in the volatility process to

be 0.013 under Q, expressed in daily terms, corresponding to a one-day autocorrelation

coefficient in volatility equal to 0.987. Moreover, as close-to-maturity European-style option

prices are more sensitive to the specification of the jump intensity dynamics and of the jump

size distribution, pricing these options using the approximated process S̃Qi
i,t instead of Si,t

leads to negligible approximation errors. We confirm this in simulations in Section 4.3 and

Appendix C.4. Unlike Andersen et al. (2017) we do not “freeze” the jump intensity to its

value at time t, because in our setting it can vary considerably, even over the short period,

due to the self-excitation and contagion effects discussed in Section 2.1.

Finally, as the change of measure does not affect the diffusion term of the price dy-

namics, we can also adopt the approximate dynamics for the processes under P:


dS̃i,s

S̃i,s
= (ri,t − qi,t + ηiξ

2
i,t)ds+ vi,sdWi,s + Ji,sdNi,s − EQi [Ji]λi,sds, s ∈ [t, T ],

vi,s = ξi,t1{t≤s≤T}, S̃i,t = Si,t,

(6)

for i = 1, . . . ,m, but with T = t + 1; i.e., the spot volatility is assumed constant over the

period of a single day. The specifications (5)–(6) will serve as a basis for the estimation

procedure developed in Section 4.

3 The Data

Estimation is based on a rich panel of daily observations, which have, in turn, been con-

structed from tick-by-tick spot, futures and option price data for the FTSE 100, DAX 30

and S&P 500 stock market indices, spanning the period January 1, 2006, to August 13,

2015. That is, we exploit a very large sample of intra-day tick-by-tick observations to ob-
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tain daily synchronized panels of options data for the three markets in the different time

zones, as well as jump-robust spot volatility estimates constructed from intra-day returns in

a time interval preceding the observation time of the options. The synchronicity of cross-

market observations in our estimation sample is essential for capturing jump contagion

among stock market indices. We then use the panel of daily data to estimate bivariate as

well as univariate versions of the model. The sampling of tick-by-tick data underlying the

option panel observations is a non-trivial task, which warrants further description. This

section summarizes the data collection process; additional details are in Appendix B.

The data-set was obtained from the Thomson Reuters Tick History database, con-

taining time-stamped tick-by-tick data from electronic exchanges for several major stock

market indices and corresponding exchange-listed derivative contract prices. Data samples

contain bid-ask quotes and transaction prices with time-stamps in the exchange’s local

time zone that denote the time at which the price data were received by Thomson Reuters

from the exchange’s servers. As the use of official exchange-determined “close” prices is not

possible because the options are traded in different time zones, we use the synchronization

procedure as outlined next.

We create daily option panels using tick-by-tick data subsets selected from a particular

time interval during market trading hours, which we refer to as reference interval. We

choose reference intervals for market pairs such that for each corresponding pair the trade

recordings are as “synchronized” as possible to the right point of the reference interval,

which we refer to as reference point. Throughout the sample we fix the reference interval for

FTSE 100 options to 15:03–15:05 and for DAX 30 options to 16:03–16:05 (local exchange

times). The reference interval for the S&P 500 options is obtained by translating the

UK (and Germany) reference interval to US local exchange times using IANA Time Zone

Database conventions, meaning option data for the US is usually sampled between 9:03–

9:05 CST, with periodical exceptions dictated by daylight saving time adjustments used in
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the US and in Europe. We impose several rules and filters in the data selection routine;

see Appendix B.1 for specific details. Table 1 provides the descriptive statistics for the

filtered option sample for each of the three markets. In Table B.1 in the appendix, we

analyze the sensitivity to the choice of the reference intervals. Specifically, we analyze

descriptive statistics for the filtered option sample using two-minutes and increased five-

minutes intervals. Whereas some differences between the two reference intervals are visible,

they are rather marginal. Table 1, Panel D, shows that the bid-ask spreads are the smallest

for S&P, while the spreads for DAX and FTSE are of a similar magnitude. Our estimation

procedure relies on transaction data if available and otherwise on mid bid-ask quotes. The

percentage of transaction data is typically less than 1% for all three markets and for different

ranges of maturity and moneyness levels, as new quotes arrive much more frequently than

actual trades occur. The minimum tick sizes are 0.05 (S&P), 0.1 (DAX) and 0.5 (FTSE).

The data might be noisier in less liquid markets, although this is not visible in the sample

standard deviations of implied volatility in Table 1, Panel C.

In addition to the filtered option data, we use short-term interbank lending interest

rates for each relevant currency, which we interpolate to match option time-to-maturity.

Specifically, we use LIBOR-US, LIBOR-GBP and EURIBOR short-term rates for options

on S&P 500 futures, and the FTSE 100 and DAX 30 indices, respectively. We follow

Aı̈t-Sahalia and Lo (1998) by backing out forward prices from put-call parity pairs and

estimating our model using log-forward returns, circumventing the need to specify and

calibrate dividend yield dynamics. The details on forward price calculations are provided

in Appendix B.2. We further interpolate the sample Black-Scholes implied volatilities over

a fixed set of moneyness and option maturities to construct a (homogeneous) panel of input

data for the estimation procedure. Interpolating implied volatilities is a common procedure;

see, e.g., Broadie et al. (2007) and Bardgett, Gourier, and Leippold (2019). Details about

the interpolation procedure we employ are provided in Appendix B.3. Finally, for the non-
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Table 1: Descriptive statistics for the option implied volatility data

FTSE 100 DAX 30 S&P 500

5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75

Panel A: Aggregate number of option contracts

0.75 < k ≤ 0.85 1,375 2,968 9,505 16,000 23,413 33,499
0.85 < k ≤ 0.92 6,646 8,914 18,139 21,831 36,986 41,122
0.92 < k ≤ 0.98 18,743 16,670 20,637 20,843 40,197 40,236
0.98 < k ≤ 1.03 23,127 18,285 17,300 17,332 34,234 34,250
1.03 < k ≤ 1.10 10,911 13,052 17,838 21,861 28,560 37,994
1.10 < k ≤ 1.20 1,258 2,721 4,764 9,875 6,782 15,024
Total 62,060 62,610 88,183 107,742 170,172 202,125

Panel B: Sample mean of implied volatility (%)

0.75 < k ≤ 0.85 38.7 35.3 36.6 33.1 39.3 32.7
0.85 < k ≤ 0.92 31.2 27.2 30.4 27.2 29.0 25.5
0.92 < k ≤ 0.98 22.0 20.8 24.1 23.1 21.8 20.8
0.98 < k ≤ 1.03 17.2 16.9 20.0 20.1 16.7 17.0
1.03 < k ≤ 1.10 18.8 17.1 19.2 18.2 16.7 15.4
1.10 < k ≤ 1.20 31.0 24.6 26.0 21.1 26.7 20.2
Total 21.2 20.6 25.1 23.8 24.1 22.0

Panel C: Sample standard deviation of implied volatility (%)

0.75 < k ≤ 0.85 9.8 10.6 7.0 7.4 10.6 8.6
0.85 < k ≤ 0.92 10.9 8.9 8.4 7.3 9.0 7.7
0.92 < k ≤ 0.98 8.7 7.6 7.9 7.1 8.5 7.6
0.98 < k ≤ 1.03 7.9 6.9 7.9 7.0 8.5 7.6
1.03 < k ≤ 1.10 9.2 7.6 7.8 6.7 8.8 7.6
1.10 < k ≤ 1.20 11.6 9.9 9.8 7.9 11.4 8.8
Total 10.3 9.3 9.9 8.7 11.9 9.8

Panel D: Sample mean of bid-ask spread (local currency)

0.75 < k ≤ 0.85 2.52 3.44 3.12 3.18 0.25 0.33
0.85 < k ≤ 0.92 2.32 2.83 2.60 2.62 0.26 0.44
0.92 < k ≤ 0.98 2.22 2.94 2.03 2.70 0.38 0.60
0.98 < k ≤ 1.03 2.62 3.35 2.84 3.52 0.50 0.68
1.03 < k ≤ 1.10 2.41 2.76 2.75 2.60 0.30 0.48
1.10 < k ≤ 1.20 3.50 3.74 4.09 3.37 0.41 0.52
Total 2.45 3.09 2.70 2.97 0.35 0.50

This table provides descriptive statistics for filtered option data on FTSE 100, DAX 30 and S&P 500
futures. The sample contains daily option data from January 1, 2006, to August 13, 2015. The filters
employed in the data selection procedure are detailed in Appendix B.1. Observations are bucketed into
two categories for time-to-maturity, τ , and into six categories with respect to the moneyness level, defined
as strike-to-forward ratio k = K/F .

parametric spot volatility estimates, we exploit high-frequency index return data. More

specifically, to obtain spot volatility estimates, we use one-minute index return series5

5Non-parametric volatility estimates from one-minute returns are not systemically higher than those
based on two- and five-minutes returns. Also, one-minute return series exhibit insignificant positive auto-
correlation. These features suggest that microstructure noise is not strongly present in the return series.
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from the beginning of each trading day until, but not including, the reference interval for

each pair. Thus, the time periods used to obtain non-parametric volatility estimates do

not overlap with the option recordings’ time intervals, which allows us to use the model

approximation proposed in Section 2.2.

4 Estimation Procedure

In this section, we develop the estimation procedure used for the data analysis. To obtain

estimates of the spot volatility values vi,t, we employ a jump-robust spot volatility estimator

based on high-frequency returns observed before time t, with adaptive thresholding as in

Bollerslev and Todorov (2011). Appendix C.1 provides details about this estimator. These

estimators have been shown to be consistent under a typical in-fill asymptotic scheme, and

to be robust in applications and in simulations. Given the spot volatility estimates, pa-

rameter estimation involves optimization of a GMM-type criterion function, the evaluation

of which consists of two stages.

In the first stage, we back out the parameter-dependent jump intensities—the unob-

served part of the state vector—using the option-pricing relation: as option prices are func-

tions of the state variables, we can exploit this functional form to recover the latent states

from the market observables, given a set of model parameter values. In the second stage, we

evaluate the criterion function given this set of parameter values and the state vector con-

sisting of observed index prices and implied jump intensities. The general method of using

implied variables in a GMM-type estimation procedure was coined “implied-state GMM”

by Pan (2002), who used standard GMM based on univariate option-implied volatilities.

In contrast to Pan (2002), we design an estimation procedure based on GMM with a

continuum of moment conditions (C-GMM). C-GMM was initiated in the innovative work

of Carrasco and Florens (2000, 2002), in a setting without latent states. The use of a
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continuum of moments allows us to exploit more information than standard GMM with

a finite number of moment conditions, which should result in more reliable and efficient

estimates. That is, our point of departure is a novel combination of implied-state GMM

and C-GMM. Beyond this combination, our methodological contribution is three-fold: (a)

we develop a semi-parametric approach, which allows the parametric identification of jump

contagion to be robust against misspecification of diffusive volatility; (b) we develop a

partial-information version of implied-state C-GMM that mitigates the exponentially in-

creasing computational complexity associated with larger-dimensional state vectors; and

(c) we take estimation uncertainty from state-implied moments into account both formally

in asymptotic analysis and numerically when computing (asymptotic or bootstrap) stan-

dard errors. These contributions demand an extension of the existing asymptotic theory for

C-GMM, developed in the appendix. Our main contributions lie in the comprehensive data

analysis. The semi-parametric approach requires a consistency result for non-parametric

spot volatility estimation, available in the literature; our paper does not make a contri-

bution to the specific spot volatility estimation literature. Throughout this section, we

assume that for each of the markets i = 1, . . . ,m, and at regular-interval observation times

t = 0, 1, . . . , T , we observe a vector of (maturity- and moneyness-dependent) market-traded

option prices pi,t, the forward price on the index Fi,t, and the spot volatility estimate v̂i,t.

4.1 Implying the Latent States

The first stage in our estimation procedure consists of backing out the latent jump in-

tensities from the option prices given a parameter vector θ. Let us define the option

pricing relation determining a stacked vector of option prices pt = (p′1,t, . . . , p
′
m,t)

′, with

τt = (τ ′1,t, . . . , τ
′
m,t)

′ the corresponding time to maturity and kt = (k′1,t, . . . , k
′
m,t)

′ the mon-

eyness level, given the vector of forward prices Ft and jump intensities λt, model parameters
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θ, and volatility estimates v̂t, as follows:

pt = P(Ft, λt, θ, v̂t, τt, kt), (7)

with P : Rm
+ × Λ×Θ× Rm

+ × Rmnτ
+ × Rmnk

+ → Rmnτnk
+ . Here Λ ⊆ Rm

+ is the domain of the

jump intensities and Θ is a compact parameter space, such that the stationarity condition

of the multivariate Hawkes process is satisfied. This requires the spectral radius of the

matrix consisting of the entries (δij/κi), i, j = 1, 2, to be less than unity. Note that we use

several option prices with different characteristics at any time t and within any market i,

i.e., τi,t ∈ Rnτ
+ and ki,t ∈ Rnk

+ , where nτ and nk represent the number of different maturities

and moneyness levels, respectively.

We exploit the option-pricing relation (7) to imply the latent jump intensities. For-

mally, let us define the domain of invertibility of the option-pricing relation Σ ⊂ Rmnτnk
+ ×

Θ × Rm
+ × Rmnτ

+ × Rmnk
+ , such that it is a maximal set for which a mapping f : Σ → Λ is

uniquely defined by

pt = P(Ft, f(pt, Ft, θ, v̂t, τt, kt), θ, v̂t, τt, kt). (8)

Therefore, assuming that the inversion is well-defined, the option-implied jump intensities

are defined by:

λθt = f(pt, Ft, θ, v̂t, τt, kt), (9)

where we use the superscript θ to emphasize the dependence of the implied intensity on

the parameter vector θ ∈ Θ, keeping in mind its dependence on the volatility estimates v̂t.

Importantly, the vector of true intensities λt is retrieved based on the market-observables

when evaluating the mapping (9) at the true model parameters θ0 and using the true
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volatility process ξt (assuming correct model specification).

We refer to Appendix C.2.1 for further details on implying the jump intensities. As

discussed in Section 2.1, the model admits a generalized affine jump-diffusion representation

under the physical and risk-neutral probability measures. One of the important advantages

of the class of affine jump-diffusions is that the conditional characteristic function (CCF)

of the state vector XT = (logF1,T , . . . , logFm,T , λ1,T , . . . , λm,T )′ conditional on information

available at time t is known in closed form (up to the solution of an ODE system) as

an exponentially affine function of Xt; see Appendix A.2. This property is exploited in

Appendix C.2.1 to obtain model prices.

After having implied the jump intensities we can construct a series of observations for

the global state vector Xθ
t = (logF1,t, . . . , logFm,t, λ

θ
1,t, . . . , λ

θ
m,t)

′, which we then use in the

criterion function evaluation, discussed in the following sub-section.

4.2 Parameter Estimation in a Full-Information Setting

In addition to obtaining option prices, the CCF also allows us to obtain the model-implied

conditional density function of the state vector based on Fourier inversion, and thus, in

principle, to employ classical maximum likelihood, which provides asymptotically efficient

estimators (see, e.g., Singleton (2001)). However, Fourier inversion requires multivariate

numerical integration at every time point, which is computationally highly expensive in

an optimization routine. Singleton (2001) proposed to use method-of-moment estimators

directly in the “frequency domain” using the CCF of a state vector. Such an estimator

based on the CCF and its empirical counterpart avoids the need for Fourier inversion, thus

it is computationally more appealing. Furthermore, Carrasco and Florens (2002) show

that exploiting a continuum of moment conditions based on the CCF yields the asymptotic

efficiency of maximum likelihood. We follow this route and develop, in our semi-parametric
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setting, a C-GMM estimator that we extend to allow for implied state variables.

Because C-GMM requires a stationary Markovian state, we consider a state process

Yt = (y1,t, . . . , ym,t, λ1,t, . . . , λm,t)
′, which consists of daily returns yi,t = logFi,t − logFi,t−1

and latent jump intensities λi,t for each of the markets. The CCF of the stationary state

vector Yt+1 given the information at time t can be obtained from the CCF of the non-

stationary state vector Xt+1:

φ(s, Yt,∆; v̂t, θ) := E
[
eis·Yt+1|Ft

]
= E

[
eis·Xt+1|Ft

]
e−

∑m
j=1 isj logFj,t ,

with ∆ the sampling frequency of a single day. We consider the moment conditions based

on the CCF of the state vector and its empirical counterpart. This involves combining the

“raw” moment functions

u(s, Yt, Yt+1; v̂t, θ) := eis·Yt+1 − φ(s, Yt,∆; v̂t, θ), (10)

with an instrument function m(r, Yt), to obtain the moment function

h(r, s, Yt, Yt+1; v̂t, θ) := m(r, Yt) · u(s, Yt, Yt+1; v̂t, θ) = m(r, Yt)
(
eis·Yt+1 − φ(s, Yt,∆; v̂t, θ)

)
,

and hence the moment conditions

E[h(r, s, Yt, Yt+1; v̂t, θ0)] = 0, for all r, s ∈ R2m. (11)

The idea of GMM with a continuum of moments, developed in Carrasco and Florens

(2000, 2002) and Carrasco et al. (2007), is to use not a discrete finite set of vectors s as

arguments for the moment conditions (11), but rather to employ a full continuum of values

of s. Furthermore, these authors show that also using a continuum of instruments of the
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form m(r, Yt) = eir·Yt with r ∈ R2m leads to a considerable efficiency gain in estimation.

We will adopt both elements in our estimation approach. Unlike the regular C-GMM set-

up, not all components of the state vector Yt are observed in our model. However, we

can exploit the option-pricing relation (7) and imply the jump intensities from the market

observables as discussed in the previous sub-section. Under some additional assumptions,

formally stated later, we can use the moment conditions (11) based on the state vector with

implied intensities Y θ
t = (y1,t, . . . , ym,t, λ

θ
1,t, . . . , λ

θ
m,t)

′. Let us denote the sample analogue

of the moment conditions (11) based on the state vector with implied intensities as

hT (τ ; v̂, θ) :=
1

T − 1

T−1∑
t=1

h(τ, Y θ
t , Y

θ
t+1; v̂t, θ), (12)

with τ = (r, s)′ ∈ R4m.

In Appendix C.2.2, we provide further details on the criterion function of the implied-

state C-GMM procedure in the present ‘full-information setting’. It turns out there that this

procedure becomes computationally prohibitively expensive already for a bivariate model.

We overcome this by developing a partial-information setting in the following sub-section.

4.3 Parameter Estimation in a Partial-Information Setting

Singleton (2001) notes that although full maximum likelihood (ML) estimation based on

Fourier inversion of the CCF (ML-CCF) is computationally expensive in a multivariate set-

ting, one could base estimation on the marginal conditional density functions f(yi,t+1|Yt; θ)

of the single state variable yi,t+1 conditional on the entire state vector Yt. This limited-

information (LML-CCF) approach requires at most N one-dimensional integrations for

Fourier inversion instead of one N -dimensional integral evaluation. Therefore, a potential

mild loss in asymptotic efficiency is traded off against the computational simplicity relative

to the full ML-CCF approach.

21



A similar approach can be developed for the CCF-based C-GMM estimator, which

allows us to considerably decrease the computational costs when focusing on the marginal

CCF of a single economy. Therefore, instead of constructing the criterion function from one

2m-dimensional integral as in (C.4), we exploit a partial-information estimator based on the

sum of m2 2-dimensional integrals. Although this approach can be described in the general

multivariate setting, we apply it here to the bivariate model described in Appendix A.2,

where we also provide the closed-form CCF for the bivariate model under P.

Let us denote by Y
(1)
t = (y1,t, λ1,t) and Y

(2)
t = (y2,t, λ2,t) the marginal market states of

the first and second economy, and by Y
(3)
t = (y1,t, λ2,t) and Y

(4)
t = (y2,t, λ1,t) the marginal

cross-market states. Clearly, the marginal CCFs of the marginal states can be obtained from

the joint CCF evaluated at the argument vectors s(1) := (s1, 0, s3, 0)′, s(2) := (0, s2, 0, s4)′,

s(3) := (s1, 0, 0, s4)′ and s(4) := (0, s2, s3, 0)′, that is,

φ(i) (v, Yt,∆; v̂t, θ) := φ
(
s(i), Yt,∆; v̂t, θ

)
= eα

(i)(∆)+β
(i)
3 (∆)λ1,t+β

(i)
4 (∆)λ2,t , (13)

where α(i)(∆), β
(i)
3 (∆), β

(i)
4 (∆) are the solutions to the ODE system (A.10) in Appendix A.2

solved with the initial values s(i) for i = 1, 2, 3, 4.

Similar to the general setting based on the joint CCF, we exploit the marginal CCFs

to obtain the moment conditions. In the bivariate case, instead of the moment condition

described in (11) we can consider four sets of “marginal” moment conditions stacked in a

vector form, that is:

E[h(τ, t; θ0)] = E





h(1)(τ ; v̂t, θ0)

h(2)(τ ; v̂t, θ0)

h(3)(τ ; v̂t, θ0)

h(4)(τ ; v̂t, θ0)




=



0

0

0

0


, (14)
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with

h(i)(τ ; v̂t, θ) = m(r, Y
(i)
t )

(
eis·Y (i)

t+1 − φ(i)(s, Yt; v̂t, θ)
)
,

where i = 1, 2, 3, 4, τ = (r, s)′ and r, s ∈ R2.

In Appendix C.2.3, we provide additional details on the criterion function of this

partial-information implied-state C-GMM procedure. Furthermore, we discuss in detail

the asymptotic properties of this estimation procedure in Appendix C.3. More specifically,

under Assumptions C.1–C.4 stated in the appendix—requiring stationarity and Markovian-

ity of the process Yt, regularity of the moment functions and their empirical counterparts,

and consistency of the non-parametric spot volatility estimator—, we formally establish the

asymptotic normality of our estimators and provide estimators for the asymptotic standard

errors that account for the effect of implied-state moments.

To analyze the finite-sample performance of our estimation procedure, we provide de-

tailed Monte Carlo simulation results in Appendix C.4. The results, a summary of which is

contained in Table 2 with full details provided in the appendix, show a good finite-sample

performance of our partial-information implied-state C-GMM procedure, notwithstanding

the challenging nature of the statistical problem. We find in particular that the model

parameters capturing jump contagion (i.e., κi, λi, and δij, i, j = 1, 2), which are of central

interest in this paper, are identified with high precision. We note that our simulation de-

sign includes the semi-nonparametric approximation of Section 2.2 and the pricing errors

induced by it. For comparison, Appendix C.4 also contains simulation results for (infeasi-

ble) moment conditions based on the fully parametric model assuming the spot volatilities

and stochastic volatility parameters to be known. The results are similar, indicating that

the “volatility freezing” approximation has relatively little effect on estimator behavior.

Because the Monte Carlo analysis also shows that the asymptotic standard errors appear
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Table 2: Monte Carlo simulation results for the bivariate model

µQ1
1 σ1 κ1 λ1 δ11 δ12 µ1 η1

true -0.130 0.030 6.000 1.000 3.000 1.000 -0.040 2.000
25% -0.133 0.027 5.520 0.924 2.685 0.925 -0.042 1.560
50% -0.129 0.031 5.872 1.043 2.901 1.050 -0.038 2.467
75% -0.125 0.034 6.116 1.086 3.070 1.131 -0.035 2.957

µQ2
2 σ2 κ2 λ2 δ22 δ21 µ2 η2

true -0.130 0.030 5.000 1.000 2.000 3.000 -0.040 2.000
25% -0.132 0.028 4.729 0.945 1.835 2.803 -0.043 1.333
50% -0.127 0.030 4.925 1.083 2.002 3.074 -0.039 2.237
75% -0.123 0.033 5.073 1.175 2.135 3.323 -0.036 2.667

This table summarizes the Monte Carlo simulation results of the partial-information
implied-state C-GMM procedure. True parameters and Monte Carlo sample quantiles
(at 25%, 50%, and 75%) are presented on separate rows. Further details are in
Appendix C.4.

to be sensitive to the numerical implementation details of the relevant integrals, we will

report, in the next section, bootstrap standard errors, using a parametric recursive-design

bootstrap approach that is described in detail in Appendix C.5.

5 Data Analysis

In this section, we describe our estimation results for the three pairs of stock market indices

we consider. We also provide three model applications to further highlight the statistical

and economic importance of the jump cross-excitation effect.

5.1 Estimation Results

Parameter estimates for the bivariate models are displayed in Table 3. Each bivariate model

is estimated using the partial-information implied-state C-GMM procedure developed in

Section 4.3, using synchronized daily data for the corresponding stock market indices and

their options panels following Section 3. The synchronicity between markets is crucial for
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Table 3: Estimation results for FTSE 100, DAX 30 and S&P 500

µQ σ κ λ δs δc µ η

FTSE -0.126 0.020 4.063 0.353 1.638 2.506 -0.038 2.186
[0.012] [0.002] [0.673] [0.042] [0.256] [0.328] [0.003] [0.128]

DAX -0.131 0.027 3.482 0.418 2.190 1.244 -0.025 2.680
[0.011] [0.003] [0.671] [0.044] [0.283] [0.196] [0.002] [0.168]

S&P -0.148 0.036 3.320 0.296 2.501 0.517 -0.039 2.173
[0.01] [0.004] [0.751] [0.043] [0.349] [0.146] [0.004] [0.145]

FTSE -0.131 0.033 3.216 0.283 1.709 2.119 -0.041 2.051
[0.011] [0.003] [0.657] [0.035] [0.323] [0.439] [0.003] [0.117]

S&P -0.135 0.036 3.781 0.261 2.257 1.788 -0.037 1.977
[0.016] [0.005] [0.749] [0.05] [0.273] [0.263] [0.006] [0.285]

DAX -0.138 0.039 4.235 0.394 2.287 1.658 -0.035 2.119
[0.019] [0.009] [0.803] [0.053] [0.373] [0.235] [0.007] [0.205]

This table reports bivariate model parameter estimates for three pairs of stock market indices:
FTSE 100-DAX 30, S&P 500-FTSE 100, and S&P 500-DAX 30. The δs parameters capture
self-excitation for each index based on pairwise estimation (i.e., δsi = δii, i = 1, 2), while the δc

parameters capture cross-excitation for each pair (i.e., δci = δij , i, j = 1, 2, i 6= j). Bootstrap
standard errors are reported in square brackets.

the identification of jump contagion in space. We note that already in the bivariate setting,

our model is a rich semi-parametric model with 16 parameters to be estimated. Whereas

a trivariate analysis would be interesting and is theoretically feasible, it practically reaches

the limits of what can be reliably identified in finite samples. This applies in particular to

the self- and cross-excitation parameters, which increase from 4 to 9 when going from a

bivariate to a trivariate analysis and which are of central interest in the paper.

The estimation results provide statistically significant evidence of both self- and cross-

excitation in jumps for all three markets. According to our estimates, a single jump event

leads to an increase in the corresponding own jump intensity ranging from δs = 1.6 to 2.5

in the markets considered, given base rates λ ranging from 0.3 to 0.4. This self-excitation

of jumps induces jump clustering in time.6 Estimates of the cross-excitation parameter δc

range from 0.5 to 2.5. From our cross-excitation estimates, we deduce that the UK market

6The self-excitation of jumps is broadly in line with the findings in Boswijk, Laeven, and Lalu (2015)
and Du and Luo (2019), who studied univariate self-excitation models with parametric volatility dynamics
in the US market index using weekly data.
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is about four times as much exposed to shocks in the US market than vice versa. In other

words, we observe a large asymmetry in the jump contagion among FTSE and S&P stock

market indices, in line with conventional wisdom that the US market plays a leading role

in international financial markets. On the other hand, cross-excitation in jumps between

the US and German stock market indices is largely symmetric; in particular, the cross-

excitation effect from Germany—perhaps as a proxy for the Eurozone economy of which

the German economy accounts for nearly a third—to the US is stronger than suggested

by conventional wisdom. The cross-excitation effect from DAX to FTSE has the largest

cross-excitation parameter estimate. The reverse effect from FTSE to DAX is estimated

to be twice as small. We find that the Wald tests for each pair of indices reject the null

hypothesis that the cross-excitation parameters are equal to zero.7

Using the model parameter estimates in Table 3, we imply the latent jump intensities

for each index from the corresponding sets of option prices. Figure 2 plots the implied

jump intensities, along with the index log-forward returns. To back out the jump intensity

for the UK stock market index we use the parameter estimates for the pair S&P-FTSE,

while for the US and German markets we use the S&P-DAX pair estimates. We note that

the jump intensity time series implied using parameter estimates from other pairs exhibit

very similar dynamics with only minor differences in level. The jump intensities for all

three markets follow a similar pattern: in our data sample, the time series of latent jump

intensities backed out from option prices start at values close to the corresponding base

rate intensities, spike in the fall of 2008 during the global financial crisis, increase during

the European sovereign debt crisis, gradually decay towards the base rates after each of

these events, and exhibit relatively stable dynamics afterwards.

7It is conceivable that markets with the richest option information (the US, and, to a lesser degree,
Germany, see Table 1, Panel A) have the most pronounced (and most precise) estimation results. This
difference between the three markets could be reduced by considering a subset of option contracts for
a specific strike price range. This would, however, lead to such a loss of information that parameter
identification would be jeopardized. In particular, identification of jump intensities and their dynamics
requires option information over the full range of strike prices.
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Figure 2: Time-series of the option-implied jump intensities
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(a) FTSE 100
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(b) DAX 30
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(c) S&P 500

Note: This figure plots the time-series of option-implied jump intensities for FTSE 100, DAX 30 and S&P 500 stock market
indices along with corresponding log-forward returns (secondary, right-hand axis in each subplot). The parameter estimates
from the S&P-FTSE pair are used to imply the latent jump intensities for FTSE 100, while the estimates for the S&P-DAX
pair are used to back out the jump intensities for DAX 30 and S&P 500.
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Table 4: Option prices: Empirical fit

k 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99 1.01 1.03 1.05 1.07 1.09 Total

FTSE.b 1.62 1.51 1.56 1.70 1.65 1.26 0.82 1.45 2.25 2.68 2.85 3.01 3.25 2.03
FTSE.u 1.75 1.57 1.52 1.62 1.61 1.36 1.13 1.66 2.38 2.84 3.11 3.40 3.71 2.20

S&P.b 1.82 1.76 1.77 1.73 1.47 0.98 0.95 1.86 2.55 2.81 2.96 3.24 3.76 2.26
S&P.u 1.96 1.95 1.92 1.76 1.39 1.02 1.51 2.50 3.04 3.15 3.21 3.42 3.94 2.50

This table reports the root mean square errors (RMSEs, displayed as a percentage) of the option
prices written on the FTSE 100 and S&P 500 indices, expressed in terms of the market-observed
and model-implied Black-Scholes implied volatility, as a function of the strike-to-forward ratio
k = K/F , using the bivariate (.b) and univariate (.u) models and parameter estimates.

In our model set-up, the jump risk premia are driven by the difference in means

between the jump sizes under the physical and risk-neutral probability measures, i.e., they

are specified as (E[J ] − EQ[J ])λt per unit of time. The estimated jump risk premium

coefficients, E[J ]−EQ[J ], for the bivariate models are around 8.0%, 9.0% and 9.5% for the

UK, German and US stock market indices, respectively. We note that these coefficients are

commensurate with the instantaneous level of the corresponding jump intensity process.

Thus, the dynamics of the jump risk premia are time-varying and are increasing during

turbulent periods together with the intensity processes.

To illustrate the empirical fit of the option prices that our model achieves, we display

in Table 4 the root mean square errors (RMSEs) of the option prices. In particular, we

consider the bivariate parameter estimates of the pair S&P-FTSE, and display the RMSEs

obtained by comparing the market-observed and model-implied option prices. The table

demonstrates that the model, estimated for the full sample spanning January 1, 2006,

to August 13, 2015, fits well the observed option prices. The table also anticipates the

(nearly uniformly positive) gains in fit of the bivariate model compared to its univariate

counterpart discussed in the next subsection for both indices. In Appendix D.1, we also

illustrate the empirical fit of the moment conditions within the partial-information implied-

state C-GMM procedure. There, we also show that the parameter values, and the gains in

fit of the bivariate model, are reasonably stable when estimated from a subsample.
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Table 5: Univariate model estimation results for FTSE 100, DAX 30 and S&P 500

µQ σ κ λ δ µ η

FTSE -0.127 0.030 2.132 0.318 1.798 -0.030 2.379
DAX -0.137 0.032 3.207 0.486 2.132 -0.029 2.109
S&P -0.161 0.043 2.445 0.305 2.176 -0.038 2.216

This table reports parameter estimates for the univariate model for FTSE 100, DAX
30 and S&P 500 stock market indices.

5.2 Applications

We illustrate the statistical and economic implications of jump contagion in three applica-

tions. In the classical GMM tradition, we provide throughout this subsection comparisons

between parametric models that delineate only a subset of statistical relationships that are

of particular interest. Specifically, we focus on the jump contagion channel that plays a

central role in this paper. To gauge the effect of cross-excitation in the jump components

across markets, we first provide estimation results for the univariate model specification.

The univariate model can be seen as a nested version of the bivariate specification, in

which the cross-excitation parameters are turned off. We note that for the estimation of

the univariate model we use the same procedure: implied-state GMM with a continuum

of moments as discussed in Section 4.2. The estimation results of the univariate models

for the FTSE 100, DAX 30 and S&P 500 stock market indices are provided in Table 5.

Turning off the cross-excitation channel in the jump component is likely compensated for

by the other parameters of the model. For this reason we observe that, while the estimates

for the remaining parameters are of the same magnitude, some differences should and do

appear when comparing estimates between the univariate and bivariate models.

5.2.1 Distribution of Index Returns

As a first application, we consider the effect of jump contagion on the (conditional) distribu-

tion of index returns, under the physical probability measure P used for risk management.
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Table 6: Descriptive statistics for the conditional log-return distribution (simulated using
model parameter estimates, horizon h = 10 days)

0.1% 1% 5% 25% 50% 75% 95% S K E[Nt|λ0]

(a) Base Case: λ1,0 = λ1, λ2,0 = λ2

Bivariate - FTSE -7.47 -3.17 -2.10 -0.79 0.11 1.00 2.27 -0.52 6.27 0.0073
Univariate - FTSE -6.34 -3.14 -2.10 -0.77 0.12 1.00 2.28 -0.28 4.46 0.0079
Bivariate - S&P -7.90 -3.14 -2.08 -0.77 0.12 1.01 2.27 -0.59 7.17 0.0073
Univariate - S&P -8.34 -3.13 -2.09 -0.76 0.13 1.02 2.30 -0.72 9.00 0.0079

(b) Euro Debt Crisis: λ1,0 = λ2,0 = 5

Bivariate - FTSE -12.98 -7.69 -3.09 0.32 1.36 2.33 3.68 -2.11 11.34 0.1249
Univariate - FTSE -10.80 -6.26 -2.18 0.31 1.33 2.29 3.64 -1.72 10.03 0.1238
Bivariate - S&P -13.29 -7.69 -2.71 0.50 1.53 2.49 3.84 -2.23 12.80 0.1242
Univariate - S&P -14.27 -8.41 -2.50 0.67 1.68 2.64 4.02 -2.38 14.18 0.1206

(c) S&P Shock: λ1,0 = 20, λ2,0 = λ2

Bivariate - FTSE -9.56 -3.76 -2.07 -0.68 0.23 1.14 2.45 -1.00 9.04 0.0186
Univariate - FTSE -6.66 -3.12 -2.10 -0.78 0.11 1.00 2.28 -0.39 5.85 0.0081
Bivariate - S&P -15.88 -8.54 -2.99 3.79 5.89 7.10 8.76 -1.75 7.40 0.4872
Univariate - S&P -16.63 -8.84 -3.01 4.54 6.57 7.78 9.65 -1.74 7.87 0.4872

(d) FTSE Shock: λ1,0 = λ1, λ2,0 = 20

Bivariate - FTSE -16.00 -9.14 -3.77 2.78 5.13 6.35 7.92 -1.73 7.08 0.4835
Univariate - FTSE -12.29 -6.37 -2.10 3.33 5.15 6.34 7.97 -1.54 6.87 0.4924
Bivariate - S&P -8.59 -3.22 -2.06 -0.74 0.15 1.05 2.33 -0.76 8.15 0.0104
Univariate - S&P -7.83 -3.14 -2.07 -0.76 0.13 1.01 2.31 -0.58 8.19 0.0074

(e) 2008 Global Financial Crisis: λ1,0 = 20, λ2,0 = 15

Bivariate - FTSE -15.36 -8.89 -4.03 2.28 4.00 5.15 6.68 -1.83 7.72 0.3756
Univariate - FTSE -11.83 -6.61 -2.55 2.45 3.89 4.99 6.53 -1.66 7.61 0.3693
Bivariate - S&P -15.88 -8.54 -2.99 3.81 5.92 7.13 8.79 -1.75 7.38 0.4893
Univariate - S&P -16.63 -8.85 -3.01 4.54 6.57 7.78 9.65 -1.74 7.87 0.4870

This table displays the empirical quantiles (in percentages), skewness (S), kurtosis (K), and expected
number of jumps implied by the conditional distribution of simulated log-returns for S&P 500 (“index 1”)
and FTSE 100 (“index 2”). The stock index price paths are simulated using bivariate and univariate model
parameter estimates, conditional upon different values (“scenarios”) of the latent jump intensities. The
return horizon is h = 10 days. Volatilities are assumed to be constant throughout the horizon and are set
to vi,s = 8.36% for both indices, and the instantaneous Brownian correlation is set to be 0.6.

For this purpose, we simulate forward prices for a pair of indices using the parameter esti-

mates of the bivariate and univariate models from Tables 3 and 5, respectively. From the

set of bivariate estimates, we use the S&P 500 and FTSE 100 parameter estimates; this

pair exhibits the most pronounced jump contagion asymmetry according to our estimates.

Since the simulated distribution of log-returns is conditional on the (initial) jump in-

tensity values, we consider five different scenarios to illustrate the effect of jump contagion.
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Under the base scenario (a), the initial values of the intensities are given by the correspond-

ing estimates of the base rates λ1 and λ2, while in scenarios (b)–(e) we assume the initial

values to be similar to levels implied from our model during the 2008 Global Financial

Crisis and the Euro Debt Crisis. Table 6 displays the empirical quantiles, skewness and

kurtosis statistics as well as the expected number of jumps for the simulated log-return

distributions under the bivariate and univariate models. The results are based on 100,000

random paths over a 10-day horizon simulated using an Euler scheme.

It is clearly apparent from the table that the distribution of simulated log-returns is

wider (i.e., more spread out) in the bivariate model than in the univariate model for the

FTSE series under all scenarios, while this is generally not the case for the S&P series, with

the exception of scenario (d). A natural explanation for this is that in the bivariate model

the spillover of jumps from the S&P 500 index to FTSE 100 is much more pronounced

than vice versa, while the jump size parameters imply on average more negative jump sizes

under the univariate specification than under the bivariate model for S&P. Scenario (d)

assumes a large asymmetry in the level of intensities, with the intensity for S&P set to

the base rate, showing that although the cross-excitation from FTSE to S&P is four times

smaller than the reverse cross-excitation, its effect becomes important in this scenario.

Wider distributions imply larger values of standard risk measures used for risk cap-

ital calculations such as Value-at-Risk (VaR) and Expected Shortfall (ES). To illustrate,

translated into 10-days Value-at-Risk capital requirements at the 99% probability level,

the effect of accounting for cross-excitation by the bivariate model, using stress scenarios

similar to those in the Global Financial Crisis, implies a risk capital increase from about 6

to 9 cents for each dollar invested in the FTSE 100 index. This can be seen from panel (e),

column (2) in Table 6, as 1− exp(−0.0661) ≈ 6% and 1− exp(−0.0889) ≈ 9%.

We also notice that the distribution of the simulated S&P 500 returns is wider than
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that of the FTSE 100 in all scenarios except for scenario (d), due in part to the strong

self-excitation of jumps in S&P. Furthermore, the median returns on the S&P 500 are sub-

stantially larger than on the FTSE 100 in the asymmetric scenarios except for scenario (d),

although the expected number of jumps in the S&P 500 is larger. This result is likely to be

driven by the jump risk premia embedded in the expected returns under the physical mea-

sure. In other words, there are more jumps expected for the S&P 500, for which investors

demand a larger premium to bearing this jump risk. In Appendix D.2.1, we re-compute

the results of Table 6 using parameter estimates from the first half of the sample, in which

we observe even more pronounced jump contagion asymmetry.

In addition to Table 6, we provide the contour plots for the model with and without

cross-excitation, employing a stress scenario induced by a shock in the S&P 500 index, in

Figure 3. We observe that the presence of cross-excitation in the bivariate model substan-

tially increases the joint probability of large negative returns in both indices, compared to

the situation where cross-excitation is absent (and hence the dependence is driven by the

Brownian correlation only). To further analyze the statistical and economic importance

of jump contagion, we consider in Appendices D.2.2–D.2.3 two additional applications: (i)

prices of multi-index options, and (ii) implied volatility dynamics, for S&P and FTSE. We

find there e.g., that the strongest effects of jump contagion on multi-index option prices

and implied volatility dynamics for the pair S&P-FTSE occur when mimicking a typical

stress scenario that starts off in the US—the leading economy in this pair.

6 Conclusion

We have explored jump contagion in the laboratory of option markets. We have proposed

a multivariate option pricing model to capture contagious propagation of jumps among

international stock market indices. We have developed an estimation procedure exploit-
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Figure 3: Contour plots, with λ1,0 = 20, λ2,0 = λ2, h = 10

(a) Bivariate estimates (b) Univariate estimates

Note: Contour plots overlayed on top of scatter plots of log-return data simulated using parameter estimates for the bivariate
model (panel (a)) and the two univariate models (panel (b)). Return horizon set to h = 10 days. Initial jump intensities set
to λ1,0 = 20 for S&P 500 and λ2,0 = λ2 for FTSE 100. Volatilities are assumed to be constant throughout the horizon and
are set to vi,s = 8.36% for both indices, and the instantaneous correlation between Brownian increments is set to be 0.6.

ing the model’s conditional characteristic function. This characteristic function depends

upon latent stochastic volatilities and jump intensities, and we use it both for backing out

stochastic jump intensities from option prices and for the construction of a GMM crite-

rion function based on a continuum of moments. To achieve robust identification, we have

followed a semi-parametric approach, replacing spot volatilities with jump-robust realized

measures obtained from high-frequency index returns. In addition, to reduce the compu-

tational complexity which increases rapidly with the dimension of the system, we have

introduced a partial-information approach to implied-state continuum-of-moments GMM

estimation, and established its asymptotic properties. Monte Carlo simulations have been

conducted to assess the finite-sample behavior.

We have estimated the bivariate specification of our model to carefully synchronized

option panels from three pairs of major international stock market indices: FTSE 100,

DAX 30, and S&P 500. Our empirical results reveal the presence of significant jump

contagion in these option markets. Although these contagion effects are bi-directional in
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all index pairs, they are partially asymmetric, with the UK being more affected by the

US and Germany than the other way around, and with the US on par with Germany.

Finally, we have illustrated the importance of jump contagion for risk management, option

pricing, and scenario analysis. Here we find that jump contagion is both statistically

and economically relevant, with particularly strong effects in situations where the cross-

excitation is asymmetric and the jump intensity in the leading economy is markedly larger

than in the other economy.

References

Aı̈t-Sahalia, Y., Cacho-Diaz, J., & Laeven, R. J. (2015). Modeling financial contagion

using mutually exciting jump processes. Journal of Financial Economics , 117 (3),

585–606.

Aı̈t-Sahalia, Y., Laeven, R. J., & Pelizzon, L. (2014). Mutual excitation in Eurozone

sovereign CDS. Journal of Econometrics , 183 (2), 151–167.

Aı̈t-Sahalia, Y., & Lo, A. W. (1998). Nonparametric estimation of state-price densities

implicit in financial asset prices. The Journal of Finance, 53 (2), 499–547.

Aı̈t-Sahalia, Y., & Xiu, D. (2016). Increased correlation among asset classes: Are volatility

or jumps to blame, or both? Journal of Econometrics , 194 (2), 205–219.

Andersen, T. G., Fusari, N., & Todorov, V. (2017). Short-term market risks implied by

weekly options. The Journal of Finance, 72 (3), 1335–1386.

Andersen, T. G., Fusari, N., & Todorov, V. (2020). The pricing of tail risk and the

equity premium: Evidence from international option markets. Journal of Business &

Economic Statistics , 38 (3), 662–678.

Bakshi, G., Carr, P., & Wu, L. (2008). Stochastic risk premiums, stochastic skewness in

currency options, and stochastic discount factors in international economies. Journal

of Financial Economics , 87 (1), 132–156.

Bardgett, C., Gourier, E., & Leippold, M. (2019). Inferring volatility dynamics and risk

premia from the S&P 500 and VIX markets. Journal of Financial Economics , 131 (3),

593–618.

Bollerslev, T., & Todorov, V. (2011). Estimation of jump tails. Econometrica, 79 (6),

1727–1783.

Boswijk, H. P., Laeven, R. J., & Lalu, A. (2015). Asset returns with self-exciting jumps:

Option pricing and estimation with a continuum of moments (Tech. Rep.). Amster-

34



dam: University of Amsterdam and Tinbergen Institute.

Broadie, M., Chernov, M., & Johannes, M. (2007). Model specification and risk premia:

Evidence from futures options. The Journal of Finance, 62 (3), 1453–1490.

Carrasco, M., Chernov, M., Florens, J.-P., & Ghysels, E. (2007). Efficient estimation

of general dynamic models with a continuum of moment conditions. Journal of

Econometrics , 140 (2), 529–573.

Carrasco, M., & Florens, J.-P. (2000). Generalization of GMM to a continuum of moment

conditions. Econometric Theory , 16 (6), 797–834.

Carrasco, M., & Florens, J.-P. (2002). Efficient GMM estimation using the empirical char-

acteristic function (Tech. Rep.). Toulouse: Institut d’Économie Industrielle (IDEI).
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