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Abstract

This supplementary material serves as an appendix to the paper “Jump Contagion

among Stock Market Indices: Evidence from Option Markets”. For context, notation and

definitions, see the paper. This supplement provides details concerning: (i) the model

specification, (ii) data selection and processing, (iii) the estimation procedure, and (iv)

applications.



Appendix A Model Specification

A.1 Change of Measure

This appendix provides further details on the candidate pricing kernels and the change of

measure for the model specification discussed in Section 2. In particular, we show that the

choice of the pricing kernel for each of the markets rules out arbitrage opportunities within each

market, as well as internationally. Furthermore, we show that under the risk-neutral measures,

the jump intensity dynamics are unaffected.

On our filtered probability space, we assume the existence of a stochastic discount factor

process Mi,t that prices all assets in economy i. We consider a candidate pricing kernel Mi,t

that has the following dynamics:

dMi,t

Mi,t
= −ri,tdt− ηiξi,tdWi,t +

m∑
k=1

(
U ik,tdNk,t − E[U ik,t]λk,tdt

)
, (A.1)

where U ik,t are random jump sizes in market k, specific to pricing kernel i. That is, in order to

price the jump risk in market i, we allow the pricing kernel Mi,t to jump simultaneously with

the underlying indices of every market. We assume the relative jump sizes U ik,t in the pricing

kernels to follow the same type of distribution as the index jump sizes, i.e., U ik,t = eV
i
k,t − 1 are

independently log-normally distributed with V i,t
k ∼ N (ai,k, b

2
i,k). Note that U ik,t are allowed to

be different from U jk,t for i 6= j, as investors in markets i and j 6= i may perceive jump events

in market k 6= {i, j} differently, leading to different jump sizes in their corresponding pricing

kernels Mi,t and Mj,t. It is assumed that U ik,t is independent of U jn,t for i 6= j and/or k 6= n, and

independent of all Brownian motions, but the kernel jump log-sizes V i
k,t are possibly correlated

with the index jump log-sizes Zk,t, with correlation coefficients ρi,k.

Similar to the univariate setting of Pan (2002), we assume the mean relative jump size

in the pricing kernel Mi,t to be zero, i.e., ai,k + 1
2b

2
i,k = 0 for k = 1, . . . ,m. These constraints

enable identification of the jump parameters and also set the jump-timing risk premium to

zero. As we will see below, they keep the dynamics of the jump intensity processes the same

under both probability measures, i.e., λQik,t ≡ λk,t for k = 1, . . . ,m. In a more general setting,
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one could allow for different intensity processes under the physical and risk-neutral measures

using an additional non-trivial component in (A.1), but this would considerably increase the

number of parameters to estimate and consequently weaken parameter identification.

One can show that the stochastic discount factor Mi,t in Eqn. (A.1) ensures that the

deflated index processes Sii,t := Mi,tSi,t exp(
∫ t

0 qi,sds) and the deflated money market account

processes Bi,t := Mi,t exp(
∫ t

0 ri,sds) are local martingales. In fact, applying Itô’s formula, we

have:

dBi,t = Bi,t

(
−ηiξi,tdWi,t +

m∑
k=1

U ik,tdNk,t

)
,

with E[U ik,t] = 0 (from the constraint ai,k + 1
2b

2
i,k = 0), and

dSii,t = Sii,t

(1− ηi)ξi,tdWi,t − EQi [Ji,t]λi,tdt+ (exp(V i
i,t + Zi,t)− 1)dNi,t +

∑
k 6=i

U ik,tdNk,t

 ,
where

E[exp(V i
i + Zi)− 1] = exp

(
ai,i + 1

2b
2
i,i + µi + ρi,ibi,iσi + 1

2σ
2
i

)
− 1

= exp
(
µQii + 1

2σ
2
i

)
− 1 = EQi [Ji,t],

with µQii = µi + ρi,ibi,iσi. Therefore, the processes Sii,t and Bi,t are indeed local martingales.

Furthermore, in the international setting, the deflated foreign index processes and for-

eign money market accounts, denominated in the currency of market i, have to be local

martingales as well. In other words, the processes Sij,t := Mi,tEij,tSj,t exp(
∫ t

0 qj,sds) and

Bij,t := Mi,tEij,t exp(
∫ t

0 rj,sds) need to be local martingales, where Eij,t is the exchange rate

between markets i and j, i.e., the price in currency i of one unit of currency j. This is

guaranteed—and hence arbitrage opportunities across all economies are ruled out—whenever

the exchange rate dynamics Eij,t are such that Mj,t = Mi,tEij,t (see, for example, Brandt and

Santa-Clara (2002), Backus, Foresi, and Telmer (2001)).

Therefore, arbitrage-free exchange rate dynamics can be derived from the ratio of foreign
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to domestic pricing kernels:

dEij,t = d

(
Mj,t

Mi,t

)
= Eij,t [(−rj,tdt− ηjξj,tdWj,t)− (−ri,tdt− ηiξi,tdWi,t)]

+ Eij,t

[(
η2
i ξ

2
i,t − ηiξi,tηjξj,t%ij,t

)
dt+

m∑
k=1

(
1 + U jk,t
1 + U ik,t

− 1

)
dNk,t

]
,

where %ij,t is the instantaneous correlation between the Brownian motions Wi,t and Wj,t. Using

the log-normal parametrization for the relative jump sizes in the pricing kernels, that is, U ik,t =

eV
i
k,t − 1 with V i

k ∼ N (ai,k, b
2
i,k), we have

dEij,t
Eij,t

= (ri,t − rj,t + η2
i ξ

2
i,t − ηiξi,tηjξj,t%ij,t)dt+ ηiξi,tdWi,t − ηjξj,tdWj,t

+

m∑
k=1

(
eV

j
k,t−V

i
k,t − 1

)
dNk,t. (A.2)

The resulting exchange rate processes feature both diffusive components with stochastic

volatility and compound jump process components. In our set-up, we allow the exchange

rate processes to jump simultaneously with jumps in any of the markets, and the jump sizes

depend on how these jumps are perceived in the markets i and j. More specifically, due to the

parametrization assumption, the exchange rate Eij,t jumps simultaneously with a jump in a

market k with log-jump size V j
k − V

i
k ∼ N (aj,k − ai,k, b2j,k − b2i,k).

Define the equivalent martingale measure Qi in market i from the Radon-Nikodym density

process ψi,t, satisfying

dψi,t
ψi,t

= −ηiξi,tdWi,t +

m∑
k=1

U ik,tdNk,t. (A.3)

Under Qi, the processes

WQi
j,t = Wj,t +

∫ t

0
ηiξi,s%ij,sds, j = 1, . . . ,m,

are standard Brownian motions with the same instantaneous correlations as the original Brow-
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nian motions under P. Note that %ii,t = 1, so that WQi
i,t = Wi,t +

∫ t
0 ηiξi,sds.

Under the defined equivalent measure Qi, the discounted foreign asset prices denominated

in currency i are Qi-martingales. To see this, define B̃i
j,t := exp(−

∫ t
0 ri,sds)Eij,t exp(

∫ t
0 rj,sds)

and S̃ij,t := exp(−
∫ t

0 ri,sds)Eij,tSj,t exp(
∫ t

0 qj,sds). By applying Itô’s formula, the dynamics of

these processes under Qi can be characterized as follows:

dB̃i
j,t

B̃i
j,t

= ηiξi,tdW
Qi
i,t − ηjξj,tdW

Qi
j,t +

m∑
k=1

(
eV

j
k,t−V

i
k,t − 1

)
dNk,t,

dS̃ij,t

S̃ij,t
= (1− ηj)ξj,tdWQi

j,t + ηiξi,tdW
Qi
i,t +

(
eZj,t+V

j
j,t−V

i
j,t − 1

)
dNj,t

− EQj [Jj,t]λj,tdt+
m∑
k 6=j

(
eV

j
k,t−V

i
k,t − 1

)
dNk,t.

Define Gkt :=
∫ t

0

(
eV

j
k,s−V

i
k,s − 1

)
dNk,s and Hj

t :=
∫ t

0

(
eZj,s+V

j
j,s−V

i
j,s − 1

)
dNj,s. Then, given

the assumptions on the zero mean relative jump sizes in the pricing kernels, i.e., ai,k+ 1
2b

2
i,k = 0

for k, i = 1, . . . ,m, it follows that

EQi [Gks ] = E
[
ψi,tG

k
t

]
= E

[
−
∫ t

0
ηiξi,sG

k
sψi,sdWi,s +

∫ t

0
ψi,s

(
eV

j
k,s − eV

i
k,s +Gks

(
eV

i
k,s − 1

))
dNk,s

]
= 0,

EQi [Hj
t ] = E

[
ψi,tH

j
t

]
= E

[
−
∫ t

0
ηiξi,sH

j
sψi,sdWi,s +

∫ t

0
ψi,s

(
eZj,s+V

j
j,s − eV

i
j,s +Hj

s

(
eV

i
j,s − 1

))
dNj,s

]
= E

[∫ t

0
EQj [Jj,t]ψi,sλj,sds

]
.

Given that

EQi
[∫ t

0
EQj [Jj,s]λj,sds

]
= E

[
ψi,t

∫ t

0
EQj [Jj,s]λj,sds

]
= E

[∫ t

0
EQj [Jj,s]ψi,sλj,sds

]
,

it follows that the discounted processes B̃i
j,t and S̃ij,t are indeed local martingales under Qi.

Therefore, the pricing kernels rule out international arbitrage opportunities.
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It is important to note that the jump intensity processes have the same dynamics under

the defined equivalent measure Qi as under the physical probability measure. To see this,

denote the compensated compound Hawkes processes by

χk,t =

∫ t

0
Jk,tdNk,t −

∫ t

0
E[Jk,s]λk,sds, k = 1, . . . ,m. (A.4)

The processes χk,t are local martingales under P by definition. Therefore, by the predictable

version of the Girsanov-Meyer theorem (see Theorem 41 in Protter (2005)),

χk,t −
∫ t

0

1

ψi,s
d〈χk, ψi〉s = χk,t −

∫ t

0
E[Jk,sU

i
k,s]λk,sds

=

∫ t

0
Jk,tdNk,t −

∫ t

0

(
E[Jk,s] + E[Jk,sU

i
k,s]
)
λk,sds

is a local martingale under Qi. Using again Jk = eZk−1 with Zk ∼ N (µk, σ
2
k) and U ik = eV

i
k −1

with V i
k ∼ N (ai,k, b

2
i,k), we have

E[Jk,s] + E[Jk,sU
i
k,s] = E

[
eZk,s+V

i
k,s − eV

i
k,s

]
= exp

(
ai,k + 1

2b
2
i,k + µi + ρi,kbi,kσk + 1

2σ
2
k

)
− exp

(
ai,k + 1

2b
2
i,k

)
= exp

(
µQik + 1

2σ
2
k

)
− 1 = EQi [Jk,s],

with µQik = µk + ρi,kbi,kσk. Therefore,

∫ t

0
Jk,tdNk,t −

∫ t

0
EQi [Jk,s]λk,sds, k = 1, . . . ,m,

are Qi-local martingales, which implies, by the martingale characterization of jump intensities,

that λk,t are intensity processes for the corresponding Hawkes processes Nk,t under the risk-

neutral probability measure as well. In other words, the measure change in economy i does

not affect the dynamics of the jump intensities λk,t for k = 1, . . . ,m, and thus does not change

jump times.

In particular, applying Girsanov’s theorem using the density process ψi,t, the index i
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follows, under Qi,

dSi,t
Si,t

= (ri,t − qi,t)dt+ ξi,tdW
Qi
i,t + Ji,tdNi,t − EQi [Ji]λi,tdt, (A.5)

where the random jump sizes Ji,t have mean EQi [Ji] under Qi, and WQi
i,t is a standard Brow-

nian motion under Qi, given by WQi
i,t = Wi,t +

∫ t
0 ηiξi,sds. The jump risk premium, (E[Ji] −

EQi [Ji])λi,t, is expected to be positive if the index price jumps are more negative on average

under Qi than under the physical measure. Note that the jump risk premium is proportional

to the intensity λi,t, and hence increases following a jump event in market i as well in other

markets j if δij 6= 0. Under the equivalent martingale measure Qi in market i, the model for

log-index dynamics is given by


d logSi,t =

(
ri,t − qi,t − 1

2ξ
2
i,t − EQi [Ji]λi,t

)
dt+ ξi,tdW

Qi
i,t + Zi,tdNi,t,

dλi,t = κi(λi − λi,t)dt+
m∑
j=1

δijdNj,t, Ji,t = eZi,t − 1, Zi,t
Qi∼ N (µQii , σ

2
i ),

(A.6)

for i = 1, . . . ,m. Thus indeed, the counting processes Nj,t for j = 1, . . . ,m are not affected by

the change of measure in market i, as the jump intensity processes λj,t have the same dynamics

under Qi as under the physical measure.

A.2 The Bivariate Specification and Conditional Characteristic Function

In the empirical analysis, we focus on the bivariate specification, i.e., m = 2. In this appendix,

we provide its explicit form and the corresponding conditional characteristic functions needed

for option pricing and parameter estimation.

We reformulate the bivariate model in terms of log-forward prices, log F̃i,t. Given the

piece-wise constant volatility processes vi,t, their dynamics under the physical measure P are
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given by



d log F̃1,t =
(

(η1 − 1
2)v2

1,t − EQ1 [J1]λ1,t

)
dt+ v1,tdW1,t + Z1,tdN1,t,

d log F̃2,t =
(

(η2 − 1
2)v2

2,t − EQ2 [J2]λ2,t

)
dt+ v2,tdW2,t + Z2,tdN2,t,

dλ1,t = κ1(λ1 − λ1,t)dt+ δ11dN1,t + δ12dN2,t,

dλ2,t = κ2(λ2 − λ2,t)dt+ δ21dN1,t + δ22dN2,t.

(A.7)

Replacing the spot volatilities by their non-parametric estimates, the state vector governing

the bivariate option price dynamics is given by Xt = (log F̃1,t, log F̃2,t, λ1,t, λ2,t)
′.

Given the market-specific pricing kernels Mi,t, index options are priced separately un-

der the risk-neutral measures Q1 and Q2 for the first and second market, respectively. The

dynamics of the bivariate model under Q1 or Q2 can be written as a special case of the mul-

tivariate setting (A.6), following the discussion in Section 2.1 and Appendix A.1, and are

semi-nonparametrically approximated following Section 2.2.

Importantly, the model specification under both risk-neutral probability measures stays

within the affine jump-diffusion class in the general setting developed in Appendix B of Duffie,

Pan, and Singleton (2000). The conditional characteristic function (CCF) of the state vector

can therefore be obtained in closed form up to the solution of a system of ordinary differential

equations. This allows to efficiently price options in each market using numerical integration

methods, employing the marginal CCF of the corresponding log-forward price. In our empirical

analysis, we use the COS method proposed by Fang and Oosterlee (2008) to efficiently price

European options.

For example, the marginal CCF of the first log-forward price under the corresponding

risk-neutral measure Q1 is given in closed form by (see Proposition A.1 below for a genuinely

bivariate result):

φQ1(s1, Xt, T − t; vt, θ) := EQ1

[
eis1·log F̃1,T |Ft

]
= eα(T−t)+β1(T−t) logF1,t+β3(T−t)λ1,t+β4(T−t)λ2,t , (A.8)
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where s1 ∈ R is the argument of the CCF, θ is the vector of parameters, and α(T − t) and

β(T − t) are the solutions to the following system of ODEs:



β̇1(u) = 0,

β̇3(u) = −(exp(µQ1 +
1

2
σ2

1)− 1)β1 − κ1β3 + exp(µQ1 β1 +
1

2
σ2

1β
2
1 + δ11β3 + δ21β4)− 1,

β̇4(u) = −κ2β4 + exp(δ12β3 + δ22β4)− 1,

α̇(u) = −1

2
v2

1,tβ1 + κ1λ1β3 + κ2λ2β4 +
1

2
v2

1,tβ
2
1 ,

(A.9)

0 ≤ u ≤ T − t, with initial conditions β1(0) = is1, β3(0) = 0, β4(0) = 0 and α(0) = 0; for

notational convenience, the time dependence in β(u) has been omitted from the right-hand side

expressions in (A.9). Note that this ODE system does not involve the Brownian price of risk

coefficients, the instantaneous correlation coefficient, or the jump size parameters of the second

index. An explicit analytic solution of (A.9) is not possible due to the non-linear components

involved in the ODE for β3(u) and β4(u). Therefore, we solve this system numerically. Recall

that due to the adopted approximation, v1,t is fixed to its value at time t when we price an

option expiring at time T . The marginal CCF for the second index, needed to price options on

the second index, can be obtained in a similar way.

The option pricing relation, while being non-linear and complex, is a key ingredient,

allowing us to exploit information in option price panels about the latent jump intensity process,

needed to estimate the model parameters.

Next, let yi,t = logFi,t − logFi,t−1, i = 1, . . . ,m. We state the following proposition,

providing the closed-form CCF for the bivariate model under P, which plays a central role in

the parameter estimation procedure:

Proposition A.1 The conditional characteristic function of the state vector Yt = (y1,t, y2,t, λ1,t,

λ2,t)
′ under P is given by

φ(s, Yt,∆; v̂t, θ) = eα(∆)+β3(∆)λ1,t+β4(∆)λ2,t ,
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where s ∈ R4 and α(∆) and β(∆) are the solutions to the following system of ODEs:



β̇1(u) = 0,

β̇2(u) = 0,

β̇3(u) = −(exp(µQ1
1 +

1

2
σ2

1)− 1)β1 − κ1β3 + exp(µ1β1 +
1

2
σ2

1β
2
1 + δ11β3 + δ21β4)− 1,

β̇4(u) = −(exp(µQ2
2 +

1

2
σ2

2)− 1)β2 − κ2β4 + exp(µ2β2 +
1

2
σ2

2β
2
2 + δ12β3 + δ22β4)− 1,

α̇(u) = (η1 −
1

2
)v̂2

1,tβ1 +
1

2
v̂2

1,tβ
2
1 + κ1λ1β3 + (η2 −

1

2
)v̂2

2,tβ2 +
1

2
v̂2

2,tβ
2
2 + κ2λ2β4

+ %tv̂1tv̂2tβ1β2,

(A.10)

with initial conditions β(0) = is and α(0) = 0.

The proof of this proposition follows from the application of the results in Appendix B of

Duffie et al. (2000) to the state vector Xt = (logF1,t, logF2,t, λ1,t, λ2,t)
′, from which the CCF

for Yt can be obtained. Note that the first two ODE equations have trivial solutions β1(u) = is1

and β2(u) = is2, respectively, for any u ∈ [0,∆], while fully analytic solutions for the ODEs

involving β̇3 and β̇4 are not available due to the non-linear terms. In the empirical analysis,

we solve the system of ODEs using numerical methods, in particular, the explicit Runge-Kutta

method.

Appendix B Data Selection and Processing

This appendix provides details of the various data selection criteria and transformations applied

to spot, futures and options data. First, we describe the full set of filters used to decide which

option data observations were included in each reference interval. Next, we give additional

details about the approach used to back out forward prices using the put-call parity. Finally,

we discuss the interpolation of the Black-Scholes implied volatility surfaces.

B.1 Option Data Selection

To select the set of options in a reference interval, we apply the following filter rule sequence:
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(i) retain recordings with message type “Trade” or “Quote”;

(ii) retain recordings with a positive Transaction price or recordings with positive Bid and

Ask prices;

(iii) for each distinct Reuters Instrument Code (RIC) symbol retain the last Bid, Ask and

Transaction price in the reference interval;

(iv) select the Transaction price if available, otherwise calculate the mid Bid-Ask price.

The first two rules trivially filter out incomplete or erroneous recordings. The last two rules are

similar to “last close” price series published by stock exchanges, which also typically prioritize

trade data over submitted quotes.

To further reduce the presence of noise in the selected data (which can come from wide

bid-ask spreads, or synchronicity mismatches between bid and ask quote timings), we consider

a few additional filters. Complementing the aforementioned rule (iii), we have also determined

for each distinct RIC the median Bid and median Ask recorded during the reference interval in

order to calculate a “median spread” equal to the difference between median Ask and median

Bid. We then employ the following additional filters:

(i) drop RIC symbols only if all of the following four conditions are met (concurrently):

(a) the number of either Bid or Ask quotes recorded in the interval is less than or equal

to 2;

(b) there are no trade observations available in the interval;

(c) the elapsed time between the last Bid and Ask is larger than 10 seconds;

(d) the spread between last Bid and Ask is larger than 95% × median spread.

(ii) for each RIC symbol replace last Bid/Ask with the corresponding median Bid/Ask if all

of the following three conditions are satisfied (concurrently):

(a) spread between last Bid and Ask is three times larger than the median spread;

(b) spread between last Bid and Ask is larger than 8 currency units;

(c) time difference between last Bid and Ask is larger than 5 seconds.
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The first filter removes infrequently traded instruments which we deem likely to have illiquid

quotes. The second filter aims to strike a balance between data synchronization and quote

reliability.

B.2 Implying Forward Prices from Put-Call Parity Pairings

To circumvent potential issues which would arise if we were to make explicit modeling choices

for future dividend yields, we follow the route described in Aı̈t-Sahalia and Lo (1998) and

back out forward prices using the put-call parity relationship and estimate our model based on

log-forward returns instead of log-index returns.

More specifically, to imply forward prices, we collect for each day all the put-call pairs

with the same strike price and maturity, subject to an additional constraint that there are at

least two Bid and two Ask quotes for each option during the reference interval. The additional

constraint on the number of quotes filters out illiquid options and ensures we obtain reliable

forwards. After implying forward prices from all the available put-call pairs, we take the

average of the forward prices implied from pairs with the same option maturity and use the

resulting term structure of forward prices to calculate Black-Scholes implied volatilities. For

this last step, we require risk-free interest rates for each market. In principle, these could also

be backed out from box spreads built from the option sets available in each interval, but this

would have required an overly complicated option pairing algorithm. We therefore opted to

use publicly available data-sets with daily LIBOR-US, LIBOR-GBP and EURIBOR interest

rate fixings. We have used linear interpolation for these fixings where needed to match the

considered option’s maturity.

We also need to interpolate the forward prices implied from put-call parity pairs of ob-

served options for each maturity. We do that by exploiting a raw interpolation of discount

factors, i.e., a linear interpolation between the log of discount factors yields that logDτ =

α logDτ1 + (1 − α) logDτ2 , where Dτ = e(r−q)τ and α = τ2−τ
τ2−τ1 . Therefore, an interpolated

forward price for maturity τ = 40 can be obtained as

Ft(τ) = DτSt = (Dτ1St)
α (Dτ2St)

1−α = Ft(τ1)αFt(τ2)1−α.
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Given that E-Mini S&P 500 future options are American style options, we extract forward

prices for these by matching put and call volatilities calculated using a binomial tree pricer

which, up to a modest degree of residual pricing noise, can account for early exercise pricing pre-

miums. We note that although our estimation procedure uses option pricing methods designed

for European options, the inputs are Black-Scholes implied volatilities. Therefore, having im-

plied volatilities from a binomial tree for American style E-Mini options, the estimation can

make use of these volatilities.

B.3 Volatility Surface Interpolation

This sub-section provides details of the standard interpolation technique we use to construct

the implied volatility data panel, used as input in the estimation procedure. Using an implied

volatility option panel as input for the estimation procedure has two advantages. First, it

ensures a homogeneous information set is used at each sample observation time-point to imply

latent jump intensities from option prices as the grid of (relative) moneyness levels and option

maturities is fixed.1 Second, it reduces computational costs as obtaining model-implied option

prices for a fixed set of maturities is computationally less-demanding. We first provide details

of the filters employed to select the option price quotes from which implied volatilities are

calculated. Next, we provide more information about the interpolation procedure and summary

statistics for the resulting implied volatility surfaces.

Defining the moneyness level, k, as the strike-to-forward ratio, i.e., k = K/F , we designate

an option as an out-of-the-money (OTM) option if it has moneyness level k > 1.02 for call

options and k < 0.98 for put options. We consider options to be close to at-the-money (ATM)

if 0.98 ≤ k ≤ 1.02. We designate an option as in-the-money (ITM) if it is not OTM or close

to ATM. We use call options to imply volatilities when k > 1, unless a particular call option

has a spread which is more than twice as large as its put counterpart, or the put counterpart

was quoted closer to the temporal reference point. A mirrored condition is applied for k ≤ 1.

These conditions trade off the liquidity of relevant options against the synchronicity of the data

1The number of near-ATM price quotes is typically larger than the number of OTM option price quotes.
Absent any standardization, the set of quotes used to imply latent jump intensities would over-weigh information
from ATM options. Using a fixed moneyness and maturity grid therefore improves the likelihood that information
about tail events is extracted from options.
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points used as inputs for building volatility smiles. When building implied volatility smiles, we

make sure that for each volatility smile the call (put) prices (calculated for all options using

put-call parity) are monotonically decreasing (increasing) functions of k.

To construct the homogeneous option panel, the sample implied volatility points for each

index option were interpolated over a fixed set of moneyness and option maturities. Hav-

ing experimented with different techniques, we have decided to use an industry-standard SVI

parametrization to interpolate in the moneyness dimension and then proportionally inter-

polated volatility slices in the maturity dimension. The SVI parametrization, proposed by

Gatheral (2011), has several appealing features, which are important in our application. Pop-

ular among practitioners, the SVI model typically produces close fits for volatility quotes and,

thus, can be reliably used for interpolation. Furthermore, it can also be used in cases when

volatility quotes are sparse, as opposed to, for instance, kernel smoothing which we found can

perform poorly in such cases. We note that our application only relies on SVI as an interpo-

lation method akin to polynomial fit used in, for instance, Broadie, Chernov, and Johannes

(2007). Its dynamics and parametrization are not in any way related to our model specification.

The standard SVI parametrization of implied total variance, w(x, τ), with time-to-expiry

τ is given as a function of log-moneyness x = log(k) = log(K/F ) and a parameter set χ =

{a, b, ρ,m, σ}:

w(x, τ) = σ2
BS(x)τ = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
, (B.1)

where a ∈ R, b ≥ 0, |ρ| < 1,m ∈ R, σ > 0 and a+bσ
√

1− ρ2 ≥ 0. In fact, when testing different

approaches, we also considered a quadratic function to fit volatility smiles. However, the SVI

parametrization most of the times displayed a better fit compared to the quadratic function.

We do not treat SVI as an option pricing model per se in the sense that we do not calibrate

it to all option data using a single set of parameter values. Instead we fit the functional form

(B.1) independently for every reference interval and for every option maturity. This allows

us to compromise between interpolating with fully flexible non-parametric approaches such as

kernel smoothing and calibrating a parametric option pricing model.
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To build the input for our estimation procedure, we calibrate the SVI model at every time

point for two volatility slices using a quasi-explicit calibration approach as per De Marco and

Martini (2009). For each day we choose two volatility slices such that times-to-maturity for

the first slice τ1 ≤ τ and for the second τ2 > τ , and τ1, τ2 are the closest available maturities

to τ . After having calibrated an SVI fit for these two volatility smiles, we interpolate between

these slices linearly in total variance to τ , which we set equal to 40 days.

Table B.1 reports the RMSEs for implied volatility data based on SVI interpolations for

each of the markets we consider and for different data buckets. The results show that the SVI

interpolation generally has very small approximation errors, with RMSEs less than 0.5% for

options with moneyness levels between 0.85 and 1.1.

The moneyness range we use for our standardized option panel at each time point is

determined by the following interval rule:

max{min{k1, k2} − 0.05, 0.85} ≤ k ≤ min{max{k1, k2}+ 0.01, 1.1}.

Although it would be better to have a fully homogeneous option panel with fixed moneyness

range at every time point, there are days when the observed range is considerably narrower

than it is on other days. Extrapolating these narrow ranges to obtain a wider fixed moneyness

range would generate unreliable information. Therefore, we limit extrapolations to a maximum

of up to 5% on the left wing (relative to the ATM point) and only 1% on the right wing of each

implied volatility smile. For the estimation procedure we sample from the resulting interpolated

volatility fit up to 13 option implied volatilities evenly spaced between 0.85 and 1.09 moneyness

levels.

Appendix C Estimation Procedure

C.1 Jump-Robust Volatility Estimation

This appendix provides the details of the jump-robust volatility estimation procedure. We

assume that for each day t = 1, . . . , T , we observe n+ 1 intra-day equity prices at equidistant
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Table B.1: SVI interpolation RMSEs

FTSE 100 DAX 30 S&P 500

5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75

0.75 < k ≤ 0.85 0.68 0.37 0.81 0.35 0.56 0.30
0.85 < k ≤ 0.92 0.17 0.09 0.20 0.10 0.41 0.14
0.92 < k ≤ 0.98 0.13 0.07 0.20 0.09 0.29 0.17
0.98 < k ≤ 1.03 0.15 0.07 0.24 0.10 0.33 0.11
1.03 < k ≤ 1.10 0.22 0.11 0.34 0.14 0.44 0.16
1.10 < k ≤ 1.20 0.29 0.15 0.44 0.23 0.41 0.22
Total 0.19 0.12 0.37 0.18 0.40 0.19

This table reports the SVI interpolation RMSEs, reported as a percentage, for the filtered samples of options
written on the FTSE 100, DAX 30 and S&P 500 indices. The sample consists of the daily options data covering
the period 1 January 2006 to 13 August 2015. The data are interpolated for each market, each day, and each
maturity slice separately.

time points: St−1+j/n, j = 0, . . . , n (implying that the opening price of day t equals the closing

price of day t − 1). Omitting the market-specific subscripts for notational convenience, we

denote the intra-day log-returns by

∆t,n
j S = log(St−1+j/n)− log(St−1+(j−1)/n).

We use the so-called threshold estimator for realized variance, originally proposed by

Mancini (2001):

v̂2
t :=

n∑
j=1

(
∆t,n
j S

)2
1{|∆t,n

j S| ≤ rn}, (C.1)

where rn is some deterministic sequence, converging to 0 as n → ∞, used as a threshold to

disentangle continuous variation from the jump contribution.

This threshold estimator has been shown to be consistent for the piece-wise constant

variance v2
t ; its efficiency depends on the choice of the threshold rn. Following Bollerslev and

Todorov (2011), we consider an adaptive thresholding with rn = αn−ω̄ and set ω̄ = 0.49 and

α = 3
√

1
5

∑5
i=1RVt−i, where RVt is the realized variance estimator imposing no threshold.

We base the parameter α on the average of the previous five days’ estimates for better option

pricing performance.2

2For the first day in the sample, we use α = 3
√

min(BVt, RVt), where BVt is the bipower variation estimator
proposed by Barndorff-Nielsen and Shephard (2004).
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When the true spot variance is not piece-wise constant, the quadratic variation estimator

(C.1) can be turned into a spot variance estimator, replacing n by a sequence `n = O(n1/2),

such that the time interval (t− `n/n, t] over which the quadratic variation is estimated shrinks

to the time point t as n→∞.

The non-parametric jump-robust volatility estimator (C.1) allows us to forego a parametric

representation of the volatility processes, and focus on the estimation of the jump parameters

in our multivariate option pricing model. Hence, in the estimation procedure described in

Section 4, we consider a semi-nonparametrically approximated representation of the model

with “frozen” spot volatilities. In our empirical analysis, we obtain the spot volatility estimates

based on high-frequency data of the equity indices just prior to the observation time of the

option panel.

C.2 Asymptotic Properties of the Estimation Procedure

In this appendix, we derive in detail the asymptotic properties of our estimators. This ulti-

mately leads to expressions for asymptotic standard errors of the parameter estimates in our

partial-information implied-state C-GMM procedure.

We start by introducing the required Hilbert space. Let π be a probability density function

on Rd. We denote by L2(π) the Hilbert space of complex-valued functions such that

L2(π) :=

{
f : Rd → C :

∫
|f(τ)|2π(τ)dτ <∞

}
.

The inner product 〈·, ·〉 and the norm ‖ · ‖ on L2(π) are defined as

〈f, g〉 :=

∫
f(τ)g(τ)π(τ)dτ, and ‖f‖ := 〈f, f〉

1
2 ,

where g(τ) denotes the complex conjugate of g(τ).

Let us further extend the notion of inner product for vectors of functions in L2(π). For

this purpose, we first define the L2(π)k space of vector functions as

L2(π)k :=
{
f = (f1, . . . , fk)

′ : fi ∈ L2(π)
}
.
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Then the inner product of two (column) vector functions f = (f1, . . . , fk)
′ and g = (g1, . . . , gk)

′

is defined as

〈f ,g〉 :=

∫
f(τ)′g(τ)π(τ)dτ =

k∑
i=1

∫
fi(τ)gi(τ)π(τ)dτ.

Similarly, for matrices F and G of L2(π) functions, with dimensions k×p and k×d, respectively,

〈F,G〉 :=
∫
F(τ)′G(τ)π(τ)dτ , a p× d matrix.

Recall that, in the full-information setting, we consider the moment function based on the

CCF of the state vector Yt and its empirical counterpart:

ht(τ ; v̂t, θ) := h(τ, Y θ
t , Y

θ
t+1; v̂t, θ) = m(r, Yt)

(
eis·gYt+1 − φ(s, Yt,∆t; v̂t, θ)

)
,

where τ = (r, s)′ with r, s ∈ R2m, and m(r, Yt) = eir·Yt is an “instrument” function. However,

in the partial-information setting, we have k sets of “marginal” moment conditions stacked in

the vector

ht(τ ; v̂t, θ) =


h

(1)
t (τ ; v̂t, θ)

...

h
(k)
t (τ ; v̂t, θ)

 ,

with

h(i)(τ ; v̂t, θ) = m(r, Y
(i)
t )

(
eis·Y (i)

t+1 − φ(i)(s, Yt,∆t; v̂t, θ)
)
, for i = 1, . . . , k,

where r, s ∈ R2, and where Y
(i)
t and φ(i)(·) are the marginal states and marginal CCFs, respec-

tively.

Before we state our formal convergence result, we first introduce some assumptions. We

start by imposing the following assumptions on our stochastic process and moment functions:

Assumption C.1 The stochastic process Yt is a stationary Markov process.

Assumption C.2 The moment functions ht(τ ; v̂t, θ) satisfy the following conditions:
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(i) ht(τ ; v, θ) is continuously differentiable w.r.t. θ and v;

(ii) ht(τ ; v, θ) ∈ L2(π)k,∀θ ∈ Θ and ∀v ∈ Rm+ ;

(iii) The equation Eθ0 [ht(τ ; vt, θ0)] = 0, ∀τ ∈ R2×2m π-almost everywhere, has a unique solu-

tion θ0 in the interior of Θ.

For the next assumption, recall that the sample analogue of the moment conditions, given

T + 1 observations, is given by

hT (τ ; v̂, θ) :=
1

T

T∑
t=1

h(τ, Y θ
t , Y

θ
t+1; v̂t, θ).

Assumption C.3 The sample moment conditions satisfy, as T →∞:

(i) supθ∈Θ ‖hT (·, v, θ)− Eθ0 [ht(·, vt, θ)]‖
P−→ 0;

(ii)
√
ThT (τ ; v, θ0)

d−→ N (0,K) on L2(π)k, where N (0,K) is the distribution of an n-dimensional

Gaussian random element of L2(π)k with mean zero and covariance operator K, the

Hilbert-Schmidt operator, defined by

K : L2(π)k → L2(π)k, Kf(τ1) :=

∫
k(τ1, τ2)f(τ2)π(τ2)dτ2, (C.2)

with kernel k(τ1, τ2) := Eθ0
[
ht(τ1; vt, θ0)ht(τ2; vt, θ0)

]
.

Note that in the partial-information setting, the kernel k(τ1, τ2) is a k×k matrix function with

(i, j)th element Eθ0
[
h

(i)
t (τ1; vt, θ0)h

(j)
t (τ2; vt, θ0)

]
.

Finally, we impose the following condition on the non-parametric spot volatility estimator:

Assumption C.4 The non-parametric spot volatility estimator v̂t, defined from `n = O(n1/2)

high-frequency returns prior to time t (with n the number of intra-day observations), satisfies

the conditions of Theorem 8.7 of Aı̈t-Sahalia and Jacod (2014), with τ = 1
2 . Furthermore,

T/n→ 0 as (T, n)→∞.
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This assumption is required for the estimation error in v̂t to be negligible in the (large (T, n))

asymptotic properties of the estimator.

Recall that the criterion function for the C-GMM estimator θ̂ is given by

QT (v̂, θ) = ‖hT (·, v̂, θ)‖2 =

∫
hT (τ, v̂, θ)′hT (τ, v̂, θ)π(τ)dτ.

We are now equipped to state the following proposition:

Proposition C.1 Under Assumptions C.1–C.4, as T →∞,

√
T (θ̂ − θ0)

d−−→ N (0,A−1BA−1),

where

A :=
〈
Eθ0 [∇θht(·, v, θ0)],Eθ0 [∇θht(·, v, θ0)]

〉
,

B :=
〈
Eθ0 [∇θht(·, v, θ0)],KEθ0 [∇θht(·, v, θ0)]

〉
,

with K as defined in (C.2).

Proof : The consistency of the C-GMM procedure follows from Carrasco and Florens (2000) and

Boswijk, Laeven, and Lalu (2015). To establish the asymptotic distribution of our estimators,

we start from a mean value expansion of hT (τ, v̂, θ̂), which yields

hT (τ, v̂, θ̂) = hT (τ, v, θ0) +∇θhT (τ, v̄, θ̄)(θ̂ − θ0) +∇vhT (τ, v̄, θ̄)(v̂ − v),

where θ̄ and v̄ are mean values. Note that in our implied-state GMM setting we have to take
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into account both “direct” and “indirect” effects in the moment functions, i.e.,

∇θhT (τ, v, θ) =
1

T

T∑
t=1

∇θh(τ, Y θ
t , Y

θ
t+1, vt, θ)

=
1

T

T∑
t=1

∂h(τ, Yt, Yt+1, vt, θ)

∂θ′
+
∂h(τ, Yt, Yt+1, vt, θ)

∂Yt

∂Yt(θ)

∂θ′

+
∂h(τ, Yt, Yt+1, ξ, θ)

∂Yt+1

∂Yt+1(θ)

∂θ′
,

∇vhT (τ, v, θ) =
1

T

T∑
t=1

∇vh(τ, Y θ
t , Y

θ
t+1, vt, θ)

=
1

T

T∑
t=1

∂h(τ, Yt, Yt+1, vt, θ)

∂v′
+
∂h(τ, Yt, Yt+1, vt, θ)

∂Yt

∂Yt(vt)

∂v′

+
∂h(τ, Yt, Yt+1, vt, θ)

∂Yt+1

∂Yt+1(vt)

∂v′
,

where the first elements on the right-hand sides of both equations capture only the direct

dependence of the moment function on θ and v, while the remaining terms are due to the

implied-state procedure.

Employing the mean value expansion in the first-order condition for optimality, we obtain

0 =
〈
∇θhT (τ, v̂, θ̂),hT (τ, v̂, θ̂)

〉
=
〈
∇θhT (τ, v̂, θ̂),hT (τ, v, θ0) +∇θhT (τ, v̄, θ̄)(θ̂ − θ0) +∇vhT (τ, v̄, θ̄)(v̂ − v)

〉
,

so that

√
T (θ̂ − θ0)

= −
〈
∇θhT (τ, v̂, θ̂),∇θhT (τ, v̄, θ̄)

〉−1 〈
∇θhT (τ, v̂, θ̂),

√
ThT (τ, v, θ0)

〉
−
〈
∇θhT (τ, v̂, θ̂),∇θhT (τ, v̄, θ̄)

〉−1 〈
∇θhT (τ, v̂, θ̂),

√
T∇vhT (τ, v̄, θ̄)(v̂ − v)

〉
. (C.3)

The second term on the right-hand side of (C.3) vanishes asymptotically by Assumption
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C.4, which is seen as follows. For fixed τ , we have

√
T∇vhT (τ, v̄, θ̄)(v̂ − v) =

1√
T

T∑
t=1

∂ht(τ, v̄t, θ̄)

∂v̄t
(v̂t − vt). (C.4)

Theorem 8.7 of Aı̈t-Sahalia and Jacod (2014) implies that, as n → ∞, {`1/2n (v̂t − vt)}t≥1

converges stably to a sequence {ζt}t≥1 that is, conditionally on FT , independent Gaussian

with mean zero and finite FT -measurable variances. Rewriting the corresponding Edgeworth

expansion (see Yoshida (2013)) as v̂t − vt = `
−1/2
n ζt + `−1

n rnt, with rnt = Op(1), we find that

the right-hand side of (C.4) can be written as

`−1/2
n

1√
T

T∑
t=1

∂ht(τ, v̄t, θ̄)

∂v̄t
ζt + T 1/2`−1

n

1

T

T∑
t=1

∂ht(τ, v̄t, θ̄)

∂v̄t
rnt.

As (T, n) → ∞, the first term is Op(`−1/2
n ) due to a (large T ) stable central limit theorem.

Because the mean of {rnt}t≥1 may be non-zero, the second term is Op(T 1/2`−1
n ) = Op(

√
T/n).

Therefore, the condition T/n→ 0 as (T, n)→∞ guarantees that (C.4) converges in probability

to 0, so that the second right-hand side term in (C.3) is asymptotically negligible.

For the first term on the right-hand side of (C.3), Assumption C.3 implies that

〈
Eθ0 [∇θht(·, vt, θ0)],

√
ThT (τ, v, θ0)

〉
d−−→ N (0,B) .

Together with consistency and Slutsky’s lemma, this yields the desired result. �

We finally discuss the estimation of the standard errors. First, given the consistent esti-

mators θ̂ and v̂, we obtain a consistent estimator of the matrix A:

ÂT =
〈
∇θhT (·, v̂, θ̂),∇θhT (·, v̂, θ̂)

〉
=

∫
∇θhT (τ, v̂, θ̂)′∇θhT (τ, v̂, θ̂)π(τ)dτ

=
k∑
i=1

∫
∇θh

(i)
T (τ, v̂, θ̂)∇θh

(i)
T (τ, v̂, θ̂)π(τ)dτ. (C.5)
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Next, let us denote the estimator of the covariance operator by

KT f(τ1) =

∫
kT (τ1, τ2)f(τ2)π(τ2)dτ2, (C.6)

with kernel

kT (τ1, τ2) =
1

T

T∑
t=1

ht(τ1; v̂t, θ̂)ht(τ2; v̂t, θ̂).

Then, asymptotic standard errors of our parameter estimates are obtained as the square

root of the diagonal elements of

T−1Â−1
T B̂T Â

−1
T , (C.7)

where

B̂T =
〈
∇θhT (·, v̂, θ̂),KT∇θhT (·, v̂, θ̂)

〉
=

∫
∇θhT (τ1, v̂, θ̂)

′KT∇θhT (τ1, v̂, θ̂)π(τ1)dτ1

=

∫
∇θhT (τ1, v̂, θ̂)

′
∫

kT (τ1, τ2)∇θhT (τ2, v̂, θ̂)π(τ2)dτ2π(τ1)dτ1

=

k∑
i=1

k∑
j=1

∫
∇θh

(i)
T (τ1, v̂, θ̂)

∫
k

(ij)
T (τ1, τ2)∇θh

(j)
T (τ2, v̂, θ̂)π(τ2)dτ2π(τ1)dτ1. (C.8)

C.3 Simulation Results

In this appendix, we analyze the finite-sample performance of the partial-information estima-

tion procedure described in Section 4.3 in a Monte Carlo simulation study for the bivariate

model described explicitly in Appendix A.2.

Our estimation procedure is designed for the semi-nonparametric specification, in which

spot volatilities ξi,s are “freezed” to their values at time t for some short time interval. In other

words, we approximate the stochastic volatilities by the processes vi,s = ξi,t for s ∈ [t, T ]. As

has been discussed in Section 2.2, this approximation has negligible errors when pricing options

with short expiration time. However, in order to take this approximation into account in our

Monte Carlo analysis, we simulate state vector series jointly with the stochastic volatility
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processes ξi,t from a fully parametric specification. In particular, we use the Heston (1993)

volatility process:

dξ2
i,t = νi(ξ2

i − ξ
2
i,t)dt+ σξ,iξi,t

(
ρξ,idWi,t +

√
1− ρ2

ξ,idW
ξ
i,t

)
, (C.9)

where the drift term allows for mean-reversion in the volatility process and W ξ
i,t is a stan-

dard Brownian motion uncorrelated with the Brownian motions W ξ
j,t, for j 6= i, and Wi,t in

the corresponding index dynamics. Therefore, the Brownian component in (C.9) and in the

corresponding index are correlated with constant coefficient ρξ,i, which captures the leverage

effect. Note that although W ξ
1,t and W ξ

2,t are independent, the Brownian part in one stochastic

volatility process is not independent of the Brownian component in the other volatility due to

the contemporaneous correlation between W1,t and W2,t in the index dynamics, which in turn

we fix to % = 0.6 in our simulation study. Finally, when estimating the semi-nonparametric

model, we use the true process vi,s = ξi,t for s ∈ [t, T ].

We simulate the state vector series from the bivariate model specification coupled with the

stochastic volatility processes (C.9) for each market using the Euler discretization technique

with an additional truncation scheme for stochastic volatility. Then we price options using the

characteristic function of the state vector including the stochastic volatility processes based on

the COS method of Fang and Oosterlee (2008). For each sample, we simulate dynamics of 8

options per index, covering the most traded levels of moneyness (with strike-to-price ratios from

0.8 to 1.15) with a time to maturity of 0.1. Given the time discretization ∆ = 1/365 between

two time points, we simulate 1500 time observations. The stock indices and synchronized

option panels are used as inputs for the estimation routine.

We note that the marginal characteristic functions of the log-prices and jump intensities

have different oscillatory frequencies due to their different levels. In particular, the frequency

of the marginal characteristic function for log-prices is much lower, which leads to only small

changes in the CCF around the origin given the standard Gaussian choice of the probability

density function π(τ). This, in turn, leads to a potential loss of probabilistic information,

which could deteriorate the parameter estimation. To overcome this issue, we re-scale the
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Table C.1: Simulation results for the bivariate model, semi-nonparametric approximation

µQ1
1 σ1 κ1 λ1 δ11 δ12 µ1 η1

true -0.130 0.030 6.000 1.000 3.000 1.000 -0.040 2.000
mean -0.129 0.032 5.816 1.005 2.909 1.035 -0.038 1.966
std 0.010 0.008 0.464 0.193 0.335 0.186 0.007 1.972
25% -0.133 0.027 5.520 0.924 2.685 0.925 -0.042 1.560
50% -0.129 0.031 5.872 1.043 2.901 1.050 -0.038 2.467
75% -0.125 0.034 6.116 1.086 3.070 1.131 -0.035 2.957

µQ2
2 σ2 κ2 λ2 δ22 δ21 µ2 η2

true -0.130 0.030 5.000 1.000 2.000 3.000 -0.040 2.000
mean -0.128 0.030 4.895 1.071 2.010 3.052 -0.039 1.676
std 0.008 0.006 0.281 0.243 0.244 0.410 0.008 2.240
25% -0.132 0.028 4.729 0.945 1.835 2.803 -0.043 1.333
50% -0.127 0.030 4.925 1.083 2.002 3.074 -0.039 2.237
75% -0.123 0.033 5.073 1.175 2.135 3.323 -0.036 2.667

This table provides Monte Carlo results for the bivariate model using the partial-
information criterion function, and the semi-nonparametric approximation of Section 2.2.
Each iteration consists of 1500 time points including simulated stock prices and 8 op-
tion prices for each time observation. True parameters and Monte Carlo sample means,
standard deviations and 25%, 50%, 75% quantiles are presented on separate rows. The
following parameters are used to simulate the stochastic volatility processes: ν1 = ν2 =
4.8, ξ21 = ξ22 = 0.015, σξ,1 = σξ,2 = 0.22, ρξ,1 = ρξ,2 = −0.6.

log-prices in the criterion function evaluation. That is, we use the CCF of c · yt with c > 0

to construct the moment conditions. The parameters of the log-price dynamics are then also

re-scaled accordingly. Based on preliminary simulation exercises, and aiming for a comparable

magnitude in the levels and oscillatory frequencies of the states, we choose the scaling parameter

to be c = 50.

Although the computational burden is significantly reduced when we employ the partial-

information setting, the estimation routine is still computationally demanding: at every it-

eration, first, we have to back out the implied intensity by solving at every time point the

non-linear least-squares problem (10) (which, in turn, involves numerical option pricing, and

hence solving an ODE system), and next numerically evaluate four 2-dimensional integrals for

the criterion function (18). Therefore, we run the Monte Carlo simulation with 100 replica-

tions, to obtain an (admittedly somewhat crude) indication of the finite-sample performance

of the estimators.

The bivariate model specification involves 16 parameters we wish to identify, i.e., 8 pa-
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rameters for each market. We recall that our multivariate option pricing model allows for,

possibly time-varying, correlations between the stock indices (see Eqn. (1)). These correla-

tions, however, do not appear in the pricing formulae of vanilla options, which depend only on

the marginal CCF of a single index price (see e.g., Eqn. (A.8)). Hence, while these correlations

are present in the model and the Monte Carlo simulations, they do not enter the moment

conditions in our partial-information C-GMM estimation approach.

The simulation results are provided in Table C.1. We report the true parameter values used

in the simulations and the corresponding Monte Carlo means, standard deviations and quantiles

of the estimates. Overall, notwithstanding the challenging nature of the econometric problem,

the results indicate a good finite-sample performance of our partial-information estimation

procedure for the bivariate model. In particular, the self- and cross-excitation parameters,

which are of central interest, are estimated with good precision. As is usual, estimates of the

Brownian prices of risk, η1 and η2, are less precise, due to the fact that their identification is

based solely on the return dynamics.

To investigate the effect of “freezing” the spot volatilities on the behavior of the estimators,

we have also conducted Monte Carlo simulations for the situation in which the true conditional

characteristic function (based on the non-freezed stochastic volatility model) is used to back out

the state variables and to obtain the moment conditions. For this comparison, we consider the

ideal, but infeasible, situation in which we use the true values of the parameters characterizing

the stochastic volatility process and the true spot volatilities, for estimation of the remaining

parameters. The results are provided in Table C.2. We generally observe that the parameters

are estimated with only a modest bias, comparable to the freezed volatility case in Table C.1.

The estimation uncertainty is generally somewhat larger in Table C.2, suggesting that the net

effect of freezing the volatility on the estimators’ behavior is actually beneficial.

The Monte Carlo simulations were also used to investigate the reliability of the asymptotic

standard errors, as derived in Appendix C.2. In practice, these standard errors appear to be

sensitive to the step size used in the calculation of numerical gradients. Therefore, we report,

in the empirical results in Section 5, standard errors based on a step size chosen such that the

Monte Carlo standard deviations were in line with the (average) asymptotic standard errors in
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Table C.2: Simulation results for the bivariate model, fully parametric model

µQ1
1 σ1 κ1 λ1 δ11 δ12 µ1 η1

true -0.130 0.030 6.000 1.000 3.000 1.000 -0.040 2.000
mean -0.131 0.028 5.722 0.996 2.968 1.078 -0.040 2.522
std 0.015 0.013 0.546 0.278 0.478 0.207 0.013 3.325
25% -0.138 0.019 5.430 0.812 2.691 0.963 -0.048 0.343
50% -0.129 0.028 5.714 0.984 3.027 1.088 -0.041 2.599
75% -0.122 0.032 6.040 1.150 3.235 1.204 -0.034 5.065

µQ2
2 σ2 κ2 λ2 δ22 δ21 µ2 η2

true -0.130 0.030 5.000 1.000 2.000 3.000 -0.040 2.000
mean -0.130 0.029 4.838 1.063 2.080 3.068 -0.039 1.759
std 0.014 0.009 0.513 0.443 0.312 0.544 0.011 3.364
25% -0.135 0.024 4.578 0.782 1.853 2.837 -0.048 -0.868
50% -0.127 0.028 4.907 1.070 2.103 3.129 -0.040 2.396
75% -0.122 0.035 5.121 1.271 2.285 3.362 -0.033 4.324

This table provides Monte Carlo results for the bivariate model using the partial-
information criterion function, and a fully parametric model with known stochastic volatil-
ity parameters and spot volatilities. Each iteration consists of 1500 time points including
simulated stock prices and 8 option prices for each time observation. True parameters
and Monte Carlo sample means, standard deviations and 25%, 50%, 75% quantiles are
presented on separate rows. The following parameters are used to simulate the stochastic
volatility processes: ν1 = ν2 = 4.8, ξ21 = ξ22 = 0.015, σξ,1 = σξ,2 = 0.22, ρξ,1 = ρξ,2 =
−0.6.
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Table D.1: Univariate model estimation results for FTSE 100, DAX 30 and S&P 500

µQ σ κ λ δ µ η

FTSE -0.127 0.030 2.132 0.318 1.798 -0.030 2.379
(0.001) (0.005) (0.005) (0.002) (0.003) (0.023) (4.716)

DAX -0.137 0.032 3.207 0.486 2.132 -0.029 2.109
(0.003) (0.013) (0.086) (0.012) (0.08) (0.026) (3.436)

S&P -0.161 0.043 2.445 0.305 2.176 -0.038 2.216
(0.002) (0.008) (0.02) (0.002) (0.025) (0.057) (4.342)

This table reports parameter estimates for the univariate model for FTSE 100, DAX 30
and S&P 500 stock market indices. Standard errors are in parentheses.

the simulations.

Appendix D Applications

We illustrate the statistical and economic implications of jump contagion in three applications.

In the classical GMM tradition, we provide throughout this appendix comparisons between

parametric models that delineate only a subset of econometric relationships that are of partic-

ular interest. Specifically, we focus on the jump contagion channel that plays a central role in

this paper.

To gauge the effect of cross-excitation in the jump components across markets, we first

provide estimation results for the univariate model specification. The univariate model can be

seen as a nested version of the bivariate specification, where the cross-excitation parameters are

turned off. We note that for the estimation of the univariate model we use the same procedure:

implied-state GMM with a continuum of moments as discussed in Section 4.2. The estimation

results of the univariate models for the FTSE 100, DAX 30 and S&P 500 stock market indices

are provided in Table D.1.

Turning off the cross-excitation channel in the jump component is likely compensated for

by the other parameters of the model. For this reason we observe that, while the estimates for

the remaining parameters are of the same magnitude, some differences should and do appear

when comparing estimates between the univariate and bivariate models.
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D.1 Distribution of Index Returns

As a first application, we consider the effect of jump contagion on the (conditional) distribution

of index returns, under the physical probability measure P used for risk management. For this

purpose, we simulate forward prices for a pair of indices using the parameter estimates of the

bivariate and univariate models from Tables 3 and D.1, respectively. From the set of bivariate

estimates, we use the S&P 500 and FTSE 100 parameter estimates; this pair exhibits the most

pronounced jump contagion asymmetry according to our model estimates.

Table D.2: Descriptive statistics for the conditional log-return distribution (simulated using
model parameter estimates, horizon h = 10 days)

0.1% 1% 5% 25% 50% 75% 95% S K E[Nt|λ0]

(a) Base Case: λ1,0 = λ1, λ2,0 = λ2

Bivariate - FTSE -7.47 -3.17 -2.10 -0.79 0.11 1.00 2.27 -0.52 6.27 0.0073
Univariate - FTSE -6.34 -3.14 -2.10 -0.77 0.12 1.00 2.28 -0.28 4.46 0.0079
Bivariate - S&P -7.90 -3.14 -2.08 -0.77 0.12 1.01 2.27 -0.59 7.17 0.0073
Univariate - S&P -8.34 -3.13 -2.09 -0.76 0.13 1.02 2.30 -0.72 9.00 0.0079

(b) Euro Debt Crisis: λ1,0 = λ2,0 = 5

Bivariate - FTSE -12.98 -7.69 -3.09 0.32 1.36 2.33 3.68 -2.11 11.34 0.1249
Univariate - FTSE -10.80 -6.26 -2.18 0.31 1.33 2.29 3.64 -1.72 10.03 0.1238
Bivariate - S&P -13.29 -7.69 -2.71 0.50 1.53 2.49 3.84 -2.23 12.80 0.1242
Univariate - S&P -14.27 -8.41 -2.50 0.67 1.68 2.64 4.02 -2.38 14.18 0.1206

(c) S&P Shock: λ1,0 = 20, λ2,0 = λ2

Bivariate - FTSE -9.56 -3.76 -2.07 -0.68 0.23 1.14 2.45 -1.00 9.04 0.0186
Univariate - FTSE -6.66 -3.12 -2.10 -0.78 0.11 1.00 2.28 -0.39 5.85 0.0081
Bivariate - S&P -15.88 -8.54 -2.99 3.79 5.89 7.10 8.76 -1.75 7.40 0.4872
Univariate - S&P -16.63 -8.84 -3.01 4.54 6.57 7.78 9.65 -1.74 7.87 0.4872

(d) FTSE Shock: λ1,0 = λ1, λ2,0 = 20

Bivariate - FTSE -16.00 -9.14 -3.77 2.78 5.13 6.35 7.92 -1.73 7.08 0.4835
Univariate - FTSE -12.29 -6.37 -2.10 3.33 5.15 6.34 7.97 -1.54 6.87 0.4924
Bivariate - S&P -8.59 -3.22 -2.06 -0.74 0.15 1.05 2.33 -0.76 8.15 0.0104
Univariate - S&P -7.83 -3.14 -2.07 -0.76 0.13 1.01 2.31 -0.58 8.19 0.0074

(e) 2008 Global Financial Crisis: λ1,0 = 20, λ2,0 = 15

Bivariate - FTSE -15.36 -8.89 -4.03 2.28 4.00 5.15 6.68 -1.83 7.72 0.3756
Univariate - FTSE -11.83 -6.61 -2.55 2.45 3.89 4.99 6.53 -1.66 7.61 0.3693
Bivariate - S&P -15.88 -8.54 -2.99 3.81 5.92 7.13 8.79 -1.75 7.38 0.4893
Univariate - S&P -16.63 -8.85 -3.01 4.54 6.57 7.78 9.65 -1.74 7.87 0.4870

This table displays the empirical quantiles (in percentages), skewness (S), kurtosis (K), and expected number
of jumps implied by the conditional distribution of simulated log-returns for S&P 500 (“index 1”) and FTSE
100 (“index 2”). The stock index price paths are simulated using bivariate and univariate model parameter
estimates, conditional upon different values (“scenarios”) of the latent jump intensities. The return horizon is
h = 10 days. Volatilities are assumed to be constant throughout the horizon and are set to vi,s = 8.36% for
both indices, and the instantaneous correlation between Brownian increments is set to be 0.6.
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Since the simulated distribution of log-returns is conditional on the (initial) jump intensity

values, we consider five different scenarios to illustrate the effect of jump contagion. Under the

base scenario (a), the initial values of the intensities are given by the corresponding estimates

of the base rates λ1 and λ2, while in scenarios (b)–(e) we assume the initial values to be similar

to levels implied from our model during the 2008 Global Financial Crisis and the Euro Debt

Crisis. Table D.2 displays the empirical quantiles, skewness and kurtosis statistics as well as

the expected number of jumps for the simulated log-return distributions under the bivariate

and univariate models. The results are based on 100 000 random paths over a 10-day horizon

simulated using an Euler scheme.

It is clearly apparent from the table that the distribution of simulated log-returns is wider

(i.e., more spread out) in the bivariate model than in the univariate model for the FTSE series

under all scenarios, while this is generally not the case for the S&P series, with the exception

of scenario (d). A natural explanation for this is that in the bivariate model the spillover of

jumps from the S&P 500 index to FTSE 100 is much more pronounced than vice versa, while

the jump size parameters imply on average more negative jump sizes under the univariate

specification than under the bivariate model for S&P. Scenario (d) assumes a large asymmetry

in the level of intensities, with the intensity for S&P set to the base rate, showing that although

the cross-excitation from FTSE to S&P is four times smaller than the reverse cross-excitation,

its effect becomes important in this scenario.

Wider distributions imply larger values of standard risk measures used for risk capital

calculations such as Value-at-Risk (VaR) and Expected Shortfall (ES). To illustrate, translated

into 10-days Value-at-Risk capital requirements at the 99% probability level, the effect of

accounting for cross-excitation by the bivariate model, using stress scenarios similar to those in

the Global Financial Crisis, implies a risk capital increase from about 6 to 9 cents for each dollar

invested in the FTSE 100 index. This can be seen from panel (e), column (2) in Table D.2, as

1− exp(−0.0661) ≈ 6% and 1− exp(0.0889) ≈ 9%.

We also notice that the distribution of the simulated S&P 500 returns is wider than that of

the FTSE 100 in all scenarios except for scenario (d), due in part to the strong self-excitation of

jumps in S&P. Furthermore, the median returns on the S&P 500 are substantially larger than
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on the FTSE 100 in the asymmetric scenarios except for scenario (d), although the expected

number of jumps in the S&P 500 is larger. This result is likely to be driven by the jump risk

premia embedded in the expected returns under the physical measure. In other words, there

are more jumps expected for the S&P 500, for which investors demand a larger premium to

bearing this jump risk.

D.2 Two-Index Options

As a second application, we investigate the economic value of cross-excitation by pricing dif-

ferent types of multi-index options, the prices of which are typically sensitive to assumptions

about dependence between the indices. As before, we restrict attention to the bivariate and

univariate model estimates for the S&P 500 and FTSE 100 pair.

The following two-index option payoff types are considered:

• Correlation option: (K1 − F1,T )+ · (K2 − F2,T )+;

• Put option on the maximum between two indices: (K −max{F1,T , F2,T })+;

• Basket option with fixed weights w1 and w2: (K − (w1F2,T + w2F1,T ))+.

We focus on these put-type options with OTM strikes because they are sensitive to the joint

occurrence of left tail events, i.e., to both indices substantially decreasing in value (this holds in

particular for the first two payoff types). Among the various available option pricing approaches

that have been proposed for pricing these types of multi-asset options, we opt for a Monte Carlo

pricing approach using 100 000 simulations based on an Euler scheme, and we consider several

initial jump intensity levels for illustration purposes. As we want to focus on the impact of cross-

excitation, we make the additional simplifying assumption that these options are priced under

a single arbitrage-free risk-neutral measure, disregarding any pricing contributions coming from

foreign-exchange rate dynamics.

Two-index option price data points are provided in Table D.3, together with single-index

vanilla European put prices for reference purposes. We first note that, given different parameter

estimates for the bivariate and univariate models, we cannot isolate a “pure” cross-excitation
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Table D.3: Two-index options

Single Puts Correlation Put on max Basket

S&P FTSE h=10 h=30 h=10 h=30 h=10 h=30

(a) λ1,0 = λ1, λ2,0 = λ2

Bivariate 0.214 0.177 0.021 0.188 0.0018 0.0152 0.0042 0.0230
Univariate 0.235 0.182 0.001 0.044 0.0001 0.0050 0.0031 0.0171

(b) λ1,0 = λ2,0 = 5
Bivariate 2.143 1.828 0.835 4.836 0.073 0.313 0.085 0.433
Univariate 2.406 1.699 0.727 4.330 0.061 0.289 0.074 0.382

(c) λ1,0 = 20, λ2,0 = λ2

Bivariate 5.115 0.809 0.841 7.983 0.059 0.386 0.047 0.407
Univariate 5.716 0.179 0.168 1.045 0.012 0.056 0.026 0.207

(d) λ1,0 = λ1, λ2,0 = 20
Bivariate 0.432 4.326 0.296 3.064 0.022 0.163 0.371 1.333
Univariate 0.237 4.237 0.160 1.109 0.011 0.063 0.350 1.286

(e) λ1,0 = 20, λ2,0 = 15
Bivariate 5.129 3.828 4.521 21.709 0.319 0.945 0.362 1.435
Univariate 5.759 3.503 4.526 20.223 0.316 0.881 0.332 1.305

This table provides option prices for correlation, put on max, and basket options under five scenarios. For
reference, single European put options are also priced for each index. Option prices are obtained using Monte
Carlo simulations of the bivariate model for the pair S&P-FTSE and univariate models for the same indices.
Initial prices are set to 100 for both indices. Correlation option strikes are set to K1 = K2 = 95; put on max
two-index strike is set to K = 95; basket option weights used are w1 = 0.3, w2 = 0.7 with strike set to K = 90.
Two different maturities are priced: h = {10, 30} days. The single-index put option strike is set to K = 95.
Volatilities are assumed to be constant throughout the horizon and are set to vi,s = 8.36% for both indices. The
contemporaneous correlation between Brownian increments is set to 0.6.

effect. To this point, a larger (in absolute terms) jump size mean and standard deviation under

the risk-neutral measure for the S&P series in the univariate model relative to the bivariate

counterpart, results in more expensive European puts on the S&P index under the univariate

specification than under the bivariate model for all scenarios, except scenario (d).

Nevertheless, we clearly observe the effect that jump cross-excitation has on the pricing

of, in particular, correlation and put on max options. The prices of these options are markedly

higher under the bivariate model with non-zero cross-excitation than under the univariate

model. The strongest effects are found in scenario (c), where the initial jump intensity in the

US, which is the leading economy in this pair, is substantially larger than in the UK. We also

observe that under the bivariate model, the prices of single puts in asymmetric scenarios are

larger due to exposure to shocks in the other market. The results for basket options, which

are relatively less sensitive to joint left tail events, depend upon the chosen weights. For the

weights w1 = 0.3 and w2 = 0.7 (as in Table D.3), we can see an effect due to the presence of
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Figure D.1: Cross-excitation effects of jumps on implied volatilities

(a) IV2 when varying λ1 (b) IV2 when varying λ1 and λ2

Note: This figure plots option implied volatilities (IV2) for the second index (i.e., FTSE) for different initial jump intensity
levels. In Panel (a), the jump intensity level of the second index is fixed to λ2 = 1, while Panel (b) shows the effect when
both λ1 and λ2 vary. The spot volatilities are fixed to vi,s = 35% in both markets and the time-to-maturity is set to
τ = 15 days.

cross-excitation in the bivariate model, although it is less pronounced than for the other two

two-index option payoff types.

D.3 Comparative Statics of Implied Volatilities

Finally, with Figure 1 in mind, we are interested in the effect of cross-excitation on the dynamics

of implied volatilities. To illustrate implied volatility dynamics, we conduct a comparative

statics analysis and investigate how the implied volatility changes after the assumed occurrence

of jumps in our multivariate option pricing model. This approach helps to exclude any other

effects that potentially impact the implied volatility surface.

In particular, we consider again the parameter estimates from the bivariate model for the

pair S&P-FTSE and mimic a scenario in which jumps occur in the US market. We fix the

volatility levels in both markets to 35% and consider short-dated options with an expiration

period of 15 days. Figure D.1(a) shows changes to implied volatility smiles coming from the

different assumed initial levels of the intensity process λ1 (for fixed λ2). Although this only

captures a marginal effect of jumps occurring in the S&P 500 index (since the jump intensity
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for the FTSE 100 index process is fixed), it illustrates that prices of options written on the

second index are sensitive to the intensity of shocks in the first market. In particular, deep

OTM options are more sensitive to the changes in λ1 than ITM counterparts. Furthermore,

we observe changes in the slopes of the implied volatility curve.

Figure D.1(b) plots the implied volatilities when both intensity processes (λ1 and λ2)

vary. This scenario mimics the occurrence of a jump in the US market: after a shock, the jump

intensity λ1 increases with the value of the self-excitation parameter, and λ2 increases with

the value of the cross-excitation parameter. For this analysis, we assume the self- and cross-

excitation parameters to be 2.5 and 2, respectively, rounding the estimates for the S&P-FTSE

pair in Table 3. Due to the simultaneous increase in λ2, we observe more pronounced shifts in

the implied volatility smile than in Figure D.1(a), corroborating once again the importance of

jump contagion.
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