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Abstract

In this paper, we develop a novel estimation procedure for parametric option pricing

models specified under the risk-neutral measure. We set up our estimation strat-

egy to minimize the distance in a functional sense between the option-implied and

model-implied logarithm of conditional characteristic functions. Within a broad

class of option pricing models, for which the characteristic function is marginally

affine, the model’s latent state vector can be concentrated out in closed form. As

a result, our estimation procedure is computationally fast and easy to implement,

while at the same time exploiting all distributional information contained in an

option panel about the risk-neutral dynamics of the underlying asset price. We

establish the asymptotic properties of the parameter and state estimators and in-

vestigate the finite-sample performance of our method in Monte Carlo simulations.

In an empirical application, we illustrate the usefulness of our estimation procedure

based on by far the largest option panel, both in the time-series and cross-sectional

dimensions, considered in the related literature.
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1 Introduction

For a long time already, researchers and practitioners alike have been using observed

market prices of options to uncover the dynamics of the underlying asset price. Early

contributions to the option pricing literature already establish that a cross section of

observed option prices allows to infer the risk-neutral distribution of the underlying asset

price at the traded maturities (e.g., Banz and Miller, 1978, Breeden and Litzenberger,

1978). The granular information content of option prices likewise proves valuable in

the estimation of parametric models with rich dynamics, which hardly can be estimated

accurately from time series data on the underlying alone. Following the emergence of

stochastic volatility models for option pricing, such as the Heston (1993) model, a volu-

minous amount of research dating back to at least the late 1990s has therefore applied

estimation approaches that incorporate option prices, leading to important insights into

the fine structure of empirical asset price dynamics, including its diffusive and jump

composition.1

When estimating parametric option pricing models using an observed option panel,2

the procedure for a typical model involves the determination of the parameters and latent

state variables that govern the model dynamics. The rich information content of the op-

tion panel can be exploited especially to estimate the risk-neutral parameters and state

vectors. Existing methods for this essentially aim at minimizing the distance between

market-observed and model-implied option prices, where the latter have a non-linear de-

pendence on the state vector and generally need to be determined by some numerical

procedure.3 The key drawback of the common estimation approaches is their notoriously

complex computations, primarily driven by the high non-linearity and large dimension-

ality of the (explicit or implicit) state filtering problem, combined with repeated costly

evaluations of model option prices. The resulting estimation problem usually can only

be realized after significantly downsampling the observed option panel in one or more

dimensions. This includes the use of short sample periods, low-frequency time series ob-

servations (weekly or even monthly), and the selection of only a small subset of strikes

and maturities on each sample date (e.g., short-dated near-the-money options). Even

after downsampling and incurring the accompanying economic information loss, these

estimation procedures remain computationally demanding and slow.

1Examples include Andersen, Fusari, and Todorov (2015b, 2017, 2020), Bates (1996, 2000), Bakshi,

Cao, and Chen (1997), Broadie, Chernov, and Johannes (2007), Eraker (2004), Eraker, Johannes, and

Polson (2003), Pan (2002), among many others.
2Following Andersen, Fusari, and Todorov (2015a), we define an option panel as a time series of option

surfaces, each of which consists of option prices indexed by strike and maturity.
3Fourier-type numerical integration techniques (e.g., Carr and Madan, 1999) have established them-

selves as a standard tool for option pricing. An alternative method that is favored in this paper for

simulation purposes is the Fourier-cosine expansion suggested by Fang and Oosterlee (2009).
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In this paper, we develop a novel estimation approach that overcomes these issues

within a broad class of option pricing models, for which we require only the specification of

the risk-neutral side of a model. Instead of directly fitting the model to option prices, our

method leverages the risk-neutral conditional characteristic function (CCF) of underlying

asset returns, which can be approximated by portfolios of observed option prices at

any traded maturity using a well-known spanning result originally established in Bick

(1982).4 As such, the CCF captures the entire risk-neutral conditional distribution of the

underlying asset return at the given maturity. Within the marginal-affine class of models

for which the CCF of underlying asset returns has an exponentially affine dependence

on the state variables,5 we set up the estimation problem to minimize the distance in

a functional sense between the “observed” and model log CCFs at different maturities,

optimally choosing risk-neutral model parameters and state vectors. The affine form

of the log CCFs eventually makes it possible to estimate the latent state vectors in

closed form as the solutions of linear least-squares problems, involving the cross section

of log CCFs on the respective date. Minimizing the distance between log CCFs rather

than option prices further allows us to avoid costly option evaluations altogether. As

a consequence, our estimation approach is computationally fast and easy to implement

while nevertheless exploiting all observed option information through the CCFs, without

the need for any prior downsampling of the option panel.

To appropriately capture the information embedded in CCFs, we represent them as

functional objects. The formulation of our estimation method invokes Hilbert space

techniques akin to generalized method of moments (GMM) estimation with a continuum

of moment conditions (C-GMM) (cf. Carrasco and Florens, 2000). By working with

CCFs as functional objects, we retain, in principle, all of the contained distributional

information about the risk-neutral dynamics of the underlying asset price. Therefore,

similar to the established result in Carrasco, Chernov, Florens, and Ghysels (2007) for C-

GMM, this estimation procedure can be expected to yield the efficiency of the maximum

likelihood estimators, which are generally infeasible to obtain for the state-of-the-art

option pricing models. Nevertheless, the functional setup of our estimation procedure is

general enough to also cover and provide theory for the special case of discretized CCFs.

We establish the asymptotic properties of the model parameter and state estimators

within our estimation approach under a suitably developed infill asymptotic scheme.

In this framework, the observation times of the panel are constant, option prices are

observed with errors, and the strike grid size approaches zero as the number of options

increases to infinity at each fixed time and maturity. The limiting joint distribution of

4This spanning result has later been popularized by Bakshi, Kapadia, and Madan (2003), Britten-

Jones and Neuberger (2000), Carr and Madan (2001), among others.
5This nests the broad class of affine jump-diffusion models in Duffie, Pan, and Singleton (2000), which

comprises a vast majority of the state-of-the-art option pricing models.

3



parameter and state estimators is mixed-Gaussian, with an asymptotic covariance matrix

depending on the particular realization of the state vector path. The derived results rely

on the established consistency and stable functional CLT of the option-implied log CCFs

in the employed Hilbert space. For feasible inference, we derive consistent estimators for

the asymptotic covariance matrix based on estimated parameter and state vectors as well

as option price errors.

To assess the finite-sample performance of our proposed estimation procedure, we

conduct extensive Monte Carlo simulations. In particular, we consider widely-used one-

and two-factor model specifications and find very good finite-sample performance of pa-

rameter and state estimates within these models. In an empirical application, we further

illustrate the usefulness of our estimation procedure based on what is, to the best of our

knowledge, by far the largest option panel, both in the time-series and cross-sectional

dimensions, considered in the related literature. The resulting empirical parameter esti-

mates in both models are consistent with those obtained in the related literature, while

the time series of model-implied volatility estimates closely resemble common model-

independent measures of market volatility.

The core related literature for our work consists of the extensive body of research

that devises option-based estimation approaches for stochastic volatility models. The

employed procedures focus either exclusively on the risk-neutral pricing side of the model

(risk-neutral estimation) or simultaneously account for both the risk-neutral and real-

world model dynamics, linked through risk premium specifications (full estimation).

The traditional and most widely adopted risk-neutral estimation approach chooses

parameters and state variables to minimize the fitting errors between observed and model

option prices (or monotonous transformations thereof, such as implied volatilities) in an

option panel according to some error metric (e.g., Bakshi et al., 1997, Broadie et al.,

2007, Huang and Wu, 2004; see also Jarrow and Kwok, 2015 for a general discussion).

Further augmentations of this estimation method include regularization terms in order

to ensure economic plausibility or handle identification issues.6 An important extension

in this direction is suggested by Andersen et al. (2015a) (AFT), which for each date

incorporates economic regularization of the model-implied spot volatility towards a high-

frequency spot volatility estimate. A common feature of these estimation methods is

that they work directly with option prices, which leads to a substantial computational

burden.7 For instance, with the common mean-squared error criterion also used by AFT,

it is effectively required to explicitly compute state vector estimates for every day in the

6The latter are primarily relevant in semi- or non-parametric settings, which typically suffer from

ill-posedness of the estimation problem (e.g., Lagnado and Osher, 1997, Cont and Tankov, 2004).
7To mitigate the costs of repeated evaluations of the option pricing function, the use of a surrogate

model based on machine learning tools has been suggested in the recent literature (cf. H. Chen, Didisheim,

and Scheidegger, 2021).
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option panel as the (numerical) solutions to non-linear least-squares problems, thereby

necessitating a large number of costly evaluations of model option prices. Despite sharing

a closely related risk-neutral estimation idea, our method circuits the computational issues

by relying on closed-form state estimates and completely avoiding the calculation of option

prices. However, due to its reliance on a specific form of the log CCF, our method is

restricted to the class of marginal-affine models. Even though we do not incorporate

economic regularization as in AFT, it is possible to extend our method in this direction.

Existing full estimation procedures, which explicitly incorporate the real-world dy-

namics of the model, employ a variety of strategies to obtain estimates for latent state

variables. Analogous state filtering techniques as in risk-neutral estimation can be used for

this purpose. Boswijk, Laeven, and Lalu (2016), Boswijk, Laeven, Lalu, and Vladimirov

(2023) within a CCF-based GMM procedure utilize state filtering that minimizes mean-

squared option pricing errors on each day in the option panel. Andersen et al. (2015b)

additionally incorporate economic regularization by embedding their method devised in

AFT into a Markov chain Monte Carlo procedure. Eventually, all full estimation ap-

proaches of this sort inherit a substantial computational complexity. This is occasionally

mitigated by imposing strong assumptions, such as the absence of measurement errors for

sufficiently many option observations per date, so that the non-linear state filtering prob-

lems reduce to cheaper (numerical) inversions of the option pricing formula. Following

this route, several “implied-state” estimation methods are devised in the existing litera-

ture, including Pan (2002), Santa-Clara and Yan (2010) in a GMM and Aı̈t-Sahalia and

Kimmel (2007) in a maximum likelihood setting.8 Addressing the apparent limitations of

these existing estimation approaches, our method may be extended to a full estimation

procedure that combines low computational burdens and non-restrictive assumptions on

option measurement errors.

Several full estimation approaches in the existing literature moreover make use of

dynamic (Bayesian) state filtering techniques. Simulation-based approximations are typ-

ically invoked in implementations, since exact dynamic filters are infeasible. Examples

include Markov chain Monte Carlo (e.g., Eraker, 2004), particle filtering (e.g., Bardgett,

Gourier, and Leippold, 2019, Christoffersen, Jacobs, and Mimouni, 2010, Fulop and Li,

2019, Johannes, Polson, and Stroud, 2009), or the efficient method of moments (e.g.,

Andersen, Benzoni, and Lund, 2002, Chernov and Ghysels, 2000). By relying on ex-

tensive simulations, all of these approaches carry a heavy computational burden.9 Al-

ternatively, simulations can be circumvented by reverting to (approximative) non-linear

8Relatedly, for single-factor stochastic volatility models, Aı̈t-Sahalia, Li, and Li (2021) develop a

GMM approach that exploits properties of implied volatility surfaces.
9This burden may again be reduced by using a surrogate model for option pricing (cf. Dufays, Jacobs,

Liu, and Rombouts, 2023). But even in this study, the authors have to significantly downsample the

number of options per day to bear the associated computational costs.
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Kalman filtering techniques (e.g., Bates, 2000). The construction of certain portfolios of

options, whose model prices exhibit an (exponentially) affine relation to the state vector,

further enables the use of the linear Kalman filter. In an affine framework, Feunou and

Okou (2018) suggest such an estimation approach based on cumulants of underlying asset

returns. Boswijk, Laeven, and Vladimirov (2024) (BLV) instead use the log CCF with

quasi-maximum likelihood estimation.10

The contribution of BLV is closely related to this paper particularly because they

also leverage the form of log CCFs within an affine framework. However, our method

differs from and extends BLV in several dimensions. The closed-form state filtering in

our method achieves additional computational gains over the linear Kalman filter in BLV,

which itself already realizes substantial improvements over competing approaches. As a

side effect, our method only relies on risk-neutral model dynamics, while the dynamic fil-

tering in BLV requires the full specification of both risk-neutral and real-world dynamics.

Thus, we avoid potential misspecification issues on the real-world model side and also

accommodate settings with small time series dimension of the observed option data.11

Nevertheless, as mentioned before, our method can also be extended towards full estima-

tion. From a technical perspective, our functional formulation further differs from the

discrete setup in BLV that uses only a finite number of CCF arguments. Thus, we avoid

the ad-hoc choice of arguments and fully exploit the functional nature of CCFs. We also

consider an asymptotic scheme with fixed time span and impose weaker non-parametric

conditions on option errors.

By relying on the CCF, our paper is also conceptually related to the literature that

employs the CCF in general parametric estimation procedures. For many popular models

(e.g., those in the affine jump-diffusion class), the advantage of such procedures is that

the CCF may admit a tractable expression, whereas the likelihood function does not.

Without the use of options, one common estimation approach is to formulate a C-GMM

estimator with a continuum of moment conditions implied by the CCF of observables

(e.g., Carrasco et al., 2007), invoking the econometric theory developed in Carrasco and

Florens (2000). From a theoretical perspective, the literature in this direction emphasizes

that CCF-based GMM estimation is able to attain the efficiency of maximum likelihood

estimation. Several contributions specifically explore this spectral GMM approach in

the setting of an exponentially affine CCF (e.g., Chacko and Viceira, 2003, Jiang and

Knight, 2002, Singleton, 2001). Incorporating option prices, Boswijk et al. (2016, 2023)

utilize CCF-based GMM estimation with state estimates determined from an option

10Related is also the use of (replicated) variance swaps as in, e.g., Aı̈t-Sahalia, Karaman, and Mancini

(2020), Bollerslev, Gibson, and Zhou (2011), Egloff, Leippold, and Wu (2010), Jones (2003), Wu (2011).
11For instance, similar to the analysis in Andersen et al. (2020), our approach thus enables a more

flexible analysis of various risk premia (i.e., differences of risk-neutral and real-world expectations),

without the need to a priori impose a parametric structure on the real-world model dynamics.
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panel, which however suffers from the aforementioned computational problems. Finally,

beyond parametric settings, CCFs (or related transforms) obtained from option prices

are used in the non-parametric estimation of spot volatility (Todorov, 2019, Todorov and

Zhang, 2023), volatility of volatility and the leverage effect (Chong and Todorov, 2024),

and jump variation (Todorov, 2022).

The remainder of the paper is organized as follows. Section 2 sets up the theoretical

framework. Subsequently, Section 3 develops our estimation approach and the main

econometric theory. In Section 4, we support our estimation approach with simulation

results. In Section 5, we report empirical results. Finally, Section 6 concludes the paper.

The appendix contains additional supplementary material.

2 Theoretical Framework

Let us denote by Ft a forward asset price at time t defined on a filtered probability

space (Ω,F , {Ft}t≥0,P). We assume that the market is arbitrage-free, which implies the

existence of a risk-neutral probability measure Q, locally equivalent to the real-world

probability measure P. Since our interest is in extracting the information content from

an option panel, we formulate the model dynamics only under the risk-neutral measure

Q, while we leave the dynamics under P unspecified. In particular, we assume that Ft is

governed by the following risk-neutral dynamics:

dFt

Ft

=
√
VtdWt +

∫
R
(ex − 1) µ̃(dt, dx), (2.1)

where Vt is an adapted, locally bounded variance process; Wt is a standard Q-Brownian

motion; and µ̃ is a counting jump measure with risk-neutral compensator ν̃t(dt, dx). We

elaborate on the underlying process dynamics and corresponding assumptions later in

the paper.

To capture the distributional properties of Ft, in this paper, we work with the risk-

neutral conditional characteristic function (CCF) of standardized log returns:

φt(u, τ) := EQ
[
e
iu

logFt+τ−logFt√
τκt,τ

∣∣∣Ft

]
with τ > 0, u ∈ R. (2.2)

We consider returns scaled by a measure of total volatility
√
τκt,τ as a form of stan-

dardization for different maturities and different levels of volatility. This is similar to

the standardized moneyness levels considered, e.g., in Andersen et al. (2015b), who scale

the log strike-to-forward ratio by the level of total volatility.12 Although we adopt this

12The scaled version can be easily obtained from the unscaled CCF of log returns with arguments of

the form u√
τκt,τ

. Following Andersen et al. (2015b), in the implementation, we choose κt,τ to be the

at-the-money implied volatility.
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scaling for the purpose of robustness of the estimation procedure, we emphasize that our

theoretical results and the estimation procedure do not require or impose this scaling.

Let us further denote by Ot(τ,m) the time-t forward price of a European-style out-

of-the-money (OTM) option written on the forward gross return Ft+τ/Ft with a time-to-

maturity τ > 0 and log-moneyness strike m.13 The OTM option is a call option if m > 0

and a put option otherwise. In the absence of arbitrage, the OTM forward option prices

are given by the conditional risk-neutral expectation of the corresponding option payoffs:

Ot(τ,m) =

EQ[(Ft+τ/Ft − em)+ | Ft] if m > 0,

EQ[(em − Ft+τ/Ft)
+ | Ft] if m ≤ 0.

Plain-vanilla options can be used to replicate more complex non-trivial payoffs. Using

the payoff-spanning result established in Bick (1982) (see also Bakshi et al., 2003, Britten-

Jones and Neuberger, 2000, Carr and Madan, 2001), the CCF of log returns can be

spanned as a portfolio of OTM option prices:

φt(u, τ) = 1−
(

u2

τκ2t,τ
+ i

u√
τκt,τ

)∫
R
e

(
i

u√
τκt,τ

−1

)
m
Ot(τ,m)dm. (2.3)

This CCF representation is akin to the construction of the VIX index and is also used,

e.g., by Todorov (2019) for non-parametric esimation of spot volatility and BLV for the

estimation of parametric models and latent state filtering using the Kalman filter.

Importantly, the portfolio representation result (2.3) is model-independent, i.e., it

does not rely on the particular model specification employed here. Hence, one may

construct an empirical version of (2.3) when using observed option prices. In practice,

however, we do not observe option prices for a continuum of strikes and the observed

prices are generally not frictionless. Nevertheless, we can approximate the expression

in (2.3) based on a finite number nt,τ of noisy observed option prices pOt(τ,mj) at discrete

log-moneyness strikes mj.
14 Similar to Todorov (2019) and BLV, we employ a Riemann

sum approximation and define

pφt(u, τ) := 1−
(

u2

τκ2t,τ
+ i

u√
τκt,τ

) nt,τ∑
j=2

e

(
i

u√
τκt,τ

−1

)
mj
pOt(τ,mj)∆mj, (2.4)

where ∆mj = mj−mj−1. Thus, given a liquid set of observed option prices, the CCF of log

returns becomes essentially an observable quantity. In Section 3, we discuss assumptions

13It is convenient to work with options on forward gross returns since they are uniformly bounded by

basic no-arbitrage considerations: 0 ≤ Ot(τ,m) ≤ 1. Denote by Õt(τ,m) the time-t forward price of a

corresponding option written on the forward price Ft+τ . By construction, these option prices satisfy the

simple scaling relation Ot(τ,m) = Õt(τ,m)/Ft.
14A minimal requirement for an empirical approximation of the payoff-spanning result in Bick (1982) to

be meaningful is that it does not admit arbitrary values in an incomplete market setting. By the theory

of Bondarenko, Dillschneider, Schneider, and Trojani (2024), the CCF has this robustness property since

the underlying complex-exponential payoff is bounded.
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imposed on option errors and provide asymptotic results for the computationally feasible

CCF pφt(u, τ) (cf. Proposition 1).

We further assume that the variance and jump processes are driven by a d-dimensional

state vector xt in a state space D ⊂ Rd, which follows a jump-diffusive Markov process.

In particular, we let Vt = v(xt) and ν̃t(dt, dx) = λ(xt)dt ⊗ ν(dx) for some deterministic

functions v: D → R+ and λ: D → R+ as well as a state-independent jump size mea-

sure ν. The CCF of (standardized) log returns satisfies φt(u, τ) = φt(u, τ ; θ0,xt) given

the (unknown) true model parameters θ0 that govern the model dynamics, where the

specification is such that the CCF is of exponential-affine form:

φt(u, τ ; θ, zt) = exp
(
αt(u, τ ; θ) + βt(u, τ ; θ)

Tzt
)
. (2.5)

Here, αt(u, τ ; θ) and βt(u, τ ; θ) are C- and Cd-valued functions, θ is a parameter vector,

and zt ∈ D is a state vector. The time variation in the coefficients stems entirely from

the measure of volatility κt,τ , i.e., we can equivalently write αt(u, τ ; θ) := α( u√
τκt,τ

, τ ; θ)

and βt(u, τ ; θ) := β( u√
τκt,τ

, τ ; θ). The formulation in equation (2.5) nests the majority

of option pricing models considered in the literature, including the affine jump-diffusion

(AJD) class of Duffie et al. (2000). We note that while the defining property of the AJD

class is an exponentially affine joint CCF of log returns and states (Duffie, Filipović,

and Schachermayer, 2003), here we only require the marginal CCF of log returns to be

exponentially affine. This allows us to accommodate a broader class of models than the

standard AJD specifications. Any model with a CCF of the form in (2.5) will be called

marginal-affine in this paper.

Under a suitably developed asymptotic scheme, in Section 3, we quantify the ap-

proximation errors in the computationally feasible CCF in (2.4), and show that the

two CCFs pφt and φt are asymptotically the same under reasonable regularity condi-

tions (cf. Lemma B.1). Therefore, under correct model specification, we can use the

option-implied CCF pφt to infer the true parameter vector θ0 and state vector xt. The

same holds true when considering the complex logarithm15 of the CCFs. Specifically, the

exponential-affine form of the parametric CCF in (2.5) implies an affine form for the log

CCF ψt(u, τ ; θ, zt) := Logφt(u, τ ; θ, zt):

ψt(u, τ ; θ, zt) = αt(u, τ ; θ) + βt(u, τ ; θ)
Tzt. (2.6)

Due to the use of finitely many noisy option prices, the logarithm of the option-implied

CCF in (2.4), pψt(u, τ) := Log pφt(u, τ), yields a noisy version of the true log CCF ψt(u, τ) =

15As such, the complex logarithm is multi-valued. To uniquely determine the logarithms of the CCFs

φt(u, τ ; θ, zt) and pφt(u, τ), we construct them as the distinguished logarithms (cf. Section 3.1), which we

denote as Log. In essence, we normalize them to zero at u = 0 and further make sure that there are

no discontinuities in the resulting functions with respect to u when crossing the branches. In practice,

we ensure this by taking the logarithm sequentially on a fine grid starting with arguments closest to the

origin.
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ψt(u, τ ; θ0,xt):

pψt(u, τ) = αt(u, τ ; θ0) + βt(u, τ ; θ0)
Txt + ξt(u, τ), (2.7)

where ξt(u, τ) is the complex-valued measurement error, stemming from the approxima-

tion of the log CCF. We emphasize that the left-hand side variable of equation (2.7) is

essentially an observed quantity, which can be computed as a function of a portfolio of

observed option prices.

Equation (2.7) is a functional complex-valued linear factor model. By considering

a finite number of CCF arguments and stacking the real and imaginary parts, BLV

transform this functional form into a real-valued linear vector representation, which serves

as the measurement equation in their estimation procedure. In this paper, we develop the

estimation procedure directly with the complex-valued functional objects. Akin to the

GMM with a continuum of moment conditions (cf. Carrasco and Florens, 2000, Carrasco

et al., 2007), this allows us to exploit all the information embedded in the CCF.

Our proposed estimation procedure is based on minimizing the distance between the

logarithms of the option-implied and model-implied CCFs. In particular, for an option

panel consisting of T days with a set of maturities Tt on day t, we minimize:

min
θ∈Θ, {zt}t=1,...,T

T∑
t=1

wt

∑
τ∈Tt

∥ pψt(·, τ)− αt(·, τ ; θ)− βt(·, τ ; θ)Tzt∥2, (2.8)

where wt are some deterministic weights. The norm ∥·∥ that measures the magnitude of

the functional objects is formally defined in Section 3.

The optimization problem (2.8) is reminiscent of minimizing the difference between the

market-observed and model-implied option prices (or their monotonic transformations,

such as implied volatilities). In fact, the commonly adopted approach in the literature

(see, e.g., Bakshi et al., 1997, Broadie et al., 2007) solves the following problem:

min
θ∈Θ, {zt}t=1,...,T

T∑
t=1

wt

Nt∑
i=1

(
pOt(τi,mi)−O(τi,mi; θ, zt)

)2
, (2.9)

where Nt is the number of different strike-maturity pairs observed on day t, pOt(τi,mi)

are the market-observed option prices, and O(τi,mi; θ, zt) are the model-implied option

prices for the same option characteristics. AFT add a penalty term to this minimization

problem to tie the dynamics of the option panel to the dynamics of the underlying asset.

This can also, in principle, be incorporated in our estimation approach.

Although the two optimization problems look similar, working with log CCFs as in

problem (2.8) offers several important advantages. First, the objective function in (2.8)

does not require evaluating option prices for a given parameter vector θ. This is in contrast

to problem (2.9), where calculation of the model-implied option prices, Ot(τi,mi; θ, zt),
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for each day and for each parameter value, requires the use of numerical option pricing

techniques (e.g., the FFT approach of Carr and Madan (1999) or the COS method of Fang

and Oosterlee (2009)). This makes our estimation procedure computationally appealing

since the option pricing methods are often computationally demanding.

Another advantage is due to the fact that the objective function in problem (2.8) is

linear in the state vector, while option prices (or implied volatilities) are highly non-linear

functions of the state vector. The latter implies that, if the state vector is latent, we have

dθ + d × T parameters to explicitly optimize in problem (2.9), where dθ is the number

of model parameters. This imposes a considerable computational burden if one wants

to analyze data with a large time series dimension. As we show in the next section,

the linear relation allows us to easily concentrate the state vectors out of the criterion

function in closed form as the solutions to linear functional least-squares problems. This

effectively reduces the number of parameters to explicitly optimize over to dθ.

We end this section by emphasizing that working with log CCFs makes our estimation

procedure computationally fast and easy to implement, and, what is even more important,

it allows us to exploit all distributional information about the risk-neutral dynamics of

the underlying asset contained in observed option prices.

3 Estimation Procedure

In this section, we formally introduce our estimation procedure and establish the asymp-

totic properties of the parameter and state estimators.

3.1 Observation scheme

We start by discussing the observation scheme of option prices and option portfolios. For

that, we first state an assumption about the underlying process:

Assumption 1. Under the risk-neutral measure Q:

(i) Ft is the unique solution to the SDE (2.1) with some positive and locally bounded

variance process Vt and jump components such that
∫
R(x

2 ∧ 1)ν(dx) <∞;

(ii) EQ[(Ft+τ/Ft)
1+q | Ft] < ∞ and EQ[(Ft+τ/Ft)

−q | Ft] < ∞ for all t ≤ T and τ ≤ T

with some T > 0 as well as some q > 0 and q > 0.

Assumption 1(i) imposes regularity conditions on the underlying stochastic process

and is satisfied for standard continuous-time option pricing models considered in the

literature. Assumption 1(ii) requires the existence of certain conditional moments of the

underlying process and its reciprocal, which regulates the tail behavior of option prices

(cf. Lee, 2004). As we show in Lemma B.1, this determines the rate of convergence of
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approximation errors in option-implied CCFs. We emphasize that Assumption 1 does

not restrict the discussion to the marginal-affine class of models and is rather weak.

Our data consist of an option panel observed at integer times t ∈ T := {1, . . . , T}
with fixed T and a large cross-section consisting of options with different strikes and

tenors.16 In particular, on each date t, we observe a non-empty and finite collection of

maturities Tt ⊂ (0, T ], and for each maturity τ ∈ Tt, we observe nt,τ OTM options with

log-moneyness strikes in Mt,τ ⊂ R. Enumerating the log-moneyness strikes in Mt,τ by

mt,τ (j), we allow for a non-equidistant log-monyeness grid

mt,τ := mt,τ (1) < . . . < mt,τ (nt,τ ) =: mt,τ

and denote the distance between adjacent log-moneyness strikes by ∆t,τ (j) := mt,τ (j)−
mt,τ (j − 1) for j = 2, . . . , nt,τ . Our asymptotic scheme is of joint type in which the

log-moneyness grid size supj=2,...,nt,τ
∆t,τ (j) goes to zero, while the log-moneyness limits

−mt,τ and mt,τ increase to infinity as n := mint,τ nt,τ → ∞ for fixed maturity sets Tt and

fixed observation times t ∈ T. To accommodate an infill asymptotic scheme, we impose

the following assumption on the asymptotic behavior of the log-moneyness grid.

Assumption 2. For the log-moneyness grid, the following holds:

(i) The set Mt,τ is monotonously increasing as nt,τ → ∞.

(ii) There exist α > 0 and α > 0 such that emt,τ ≍ n−α
t,τ and emt,τ ≍ nα

t,τ .

(iii) There exist deterministic sequences ∆t,τ > 0 such that ∆t,τ → 0 as nt,τ → ∞ and

sup
j

∣∣∣∣∆t,τ (j)

∆t,τ

− δt,τ (mt,τ (j))

∣∣∣∣→ 0

for some continuous function δt,τ (m) > 0 with supm∈R δt,τ (m) <∞.

(iv) There exist deterministic sequences ∆t > 0 and ∆ > 0 such that ∆t → 0 as

nt := minτ nt,τ → ∞ and ∆ → 0 as n→ ∞ and

∆t,τ

∆t

→ ϱt,τ > 0 and
∆t

∆
→ ϱt > 0.

Assumption 2(i) and (ii) ensure that new strikes are sequentially added to the exist-

ing ones in an interval that asymptotically grows with the number of options. Assump-

tion 2(iii) and (iv) allow for a large degree of heterogeneity in the observation scheme.

In particular, they allow for non-equidistant log-moneyness strikes across different mon-

eyness levels, maturities, and days. The quantities δt,τ (m), ϱt,τ , and ϱt regulate this

16The assumption that T := {1, . . . , T} is for convenience only. With slight adjustments in notation,

we may accommodate any arbitrary observation times T := {t1, . . . , tT }.
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heterogeneity. Since the relative log-moneyness grids have an impact on the precision

of inference for the state and parameter vectors, they appear explicitly in the limiting

asymptotic distribution results established below.

Finally, as common in the related literature, we let option prices be observed with

measurement errors due to, e.g., the presence of bid-ask spreads, tick sizes of quotes, and

liquidity issues. To distinguish sources of randomness, we define the filtration {FX
t }t≥0

generated by the stochastic underlying and state processes and the associated sub-σ-

algebra FX :=
∨

t≥0FX
t ⊂ F . Accordingly, true option prices Ot(τ,m) are FX

t -adapted,

whereas measurement errors are not. The following assumption details the structure of

measurement errors:

Assumption 3. Option prices are observed with an additive error term:

pOt(τ,m) = Ot(τ,m) + ζt(τ,m), t ∈ T, τ ∈ Tt, m ∈ Mt,τ , (3.1)

where the observation errors ζt(τ,m) = σt(τ,m)κt(τ,m) are such that:

(i) κt(τ,m) are FX-conditionally independent along tenors τ , moneyness m and time t;

(ii) E[κt(τ,m) | FX ] = 0, E[κ2
t (τ,m) | FX ] = 1, and supm∈R E[κ4

t (τ,m) | FX ] <∞;

(iii) σt(τ,m) = Ot(τ,m)σ̃t(τ,m) is FX
t -adapted with supm∈R σ̃

2
t (τ,m) <∞.

Assumption 3 allows for heteroskedastic option errors, while excluding any dependence

structure across the log-moneyness, tenor, and time dimensions conditional on FX . This

assumption avoids a parametric specification of the error terms as in alternative estima-

tion procedures (e.g., Bardgett et al., 2019, BLV, and Dufays et al., 2023) and is similar

in sprit to AFT and Todorov (2019).

Given the observation scheme of option prices, we want to establish the observational

properties of the log of the option-implied CCF, pψt(·, τ), in a suitably developed infill

asymptotic scheme. For our purposes, we focus the attention on a bounded interval of

CCF arguments U = [−U,U ] ⊂ R. The symmetry of U about the origin is for con-

venience and not restrictive, accounting for the fact that the true CCF φt(·, τ) and its

observed counterpart pφt(·, τ) in equation (2.4) are both Hermitian functions by construc-

tion. To rigorously define the associated log CCFs ψt(·, τ) and pψt(·, τ), we set them equal

to the distinguished logarithms17 of φt(·, τ) and pφt(·, τ), respectively. The absence of

zeros of a function over U is essential for the existence of its distinguished logarithm (cf.

Theorem 7.6.3 in Chung, 2000). Hence, we impose the following assumptions:

Assumption 4. For every τ ∈ Tt and t ∈ T, the following holds:

17The distinguished logarithm of a continuous function f : U → C with f(0) = 1, denoted as Log f , is

the unique continuous function g: U → C with g(0) = 0 such that f(u) = exp(g(u)) for all u ∈ U .
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(i) κt,τ ≥ δκ > 0;

(ii) φt(u, τ) ̸= 0 and pφt(u, τ) ̸= 0 for all u ∈ U .

Assumption 4(i) imposes a technical lower bound that controls the range of the ar-

guments u√
τκt,τ

of the unscaled CCF. Assumption 4(ii) guarantees the existence of the

respective distinguished logarithms. The requirement for pφt(u, τ) will eventually (for

large enough n) be automatically satisfied given the absence of zeros of φt(·, τ), not-
ing the uniform convergence of pφt(u, τ) on the compact U (cf. Lemma B.1). Moreover,

it should be noted that both distinguished logarithms ψt(·, τ) and pψt(·, τ) inherit the

Hermitian function property.

To accommodate working with pψt(·, τ) as functional objects across several maturities

τ , we introduce a Hilbert space setting for vector-valued functions in which we will work.

Concretely, take a finite (Borel) measure π over the compact set U = [−U,U ] such that

π is symmetric about the origin.18 One natural choice to generate the measure π when

dealing with a continuum of CCF arguments is a PDF (see, e.g., Carrasco et al., 2007,

Carrasco and Kotchoni, 2017). Moreover, our general specification also nests the case with

a finite number of CCF arguments, obtained by choosing a discrete π that corresponds

to some PMF. Therefore, the asymptotic results developed below apply equally to the

case when one works with the entire log CCF in functional form and with its discretized

version.

For the given measure π, we consider the associated space L2
p(π) of (equivalence classes

of) complex-valued functions f = (f1, . . . , fp)
T: R → Cp, formally defined as

L2
p(π) :=

{
f : R → Cp :

∫
U
|fi(u)|2π(du) <∞ for i = 1, . . . , p

}
.

Writing fH = (f)T for the complex conjugate transpose, we equip L2
p(π) with the canonical

inner product

⟨f ,g⟩ :=
∫
U
g(u)Hf(u)π(du) =

p∑
i=1

∫
U
fi(u)gi(u)π(du),

which induces the norm ∥f∥ = ⟨f , f⟩1/2.19 Evidently, it holds by construction that f ∈
L2
p(π) exactly when fi ∈ L2

1(π) for all i = 1, . . . , p. Moreover, if components of f and

g are Hermitian functions, we have that ⟨f ,g⟩ is real-valued due to the symmetry of U
and π.

18Formally, we thus require for π that π([−u, 0]) = π([0, u]) for all positive u ≤ U . E.g., when

π(du) = π̃(u)du is generated from a density π̃, we require that the density is symmetric about the origin

with π̃(−u) = π̃(u) for all u ∈ U .
19To keep the notation simple, we likewise denote by ∥h∥ the Euclidean norm of any complex vector h

and by ∥H∥ the induced matrix norm of any complex matrix H. Occasionally, we also use the Frobenius

matrix norm ∥H∥F .
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To accommodate the time-dependent maturity sets Tt in a notationally convenient

way, we henceforth set p = |T | for the collection of maturities T :=
⋃

t∈T Tt = {τ1, . . . , τp}.
Whenever some τi is not in the set of observed maturities Tt, we take the respective

element of a Cp-valued function f(u) := (f(u, τ1), . . . , f(u, τp))
T to be zero. Employing

this convention, denote by φt the vector of true CCFs and by pφt the corresponding vector

of observed CCFs as in equation (2.4) on date t. Analogously, denote by ψt the vector

of true log CCFs and by pψt the associated vector of observed log CCFs on date t.

The introduced Hilbert space setup is immediately compatible with the properties of

the CCF φt and its distinguished logarithm ψt as well as their observed counterparts.

It is automatically assured that the true CCF φt ∈ L2
p(π), due to its boundedness as a

characteristic function. In addition, we obtain that also the observed CCF pφt ∈ L2
p(π), as

the CCF measurement errors are uniformly bounded on the compact U (cf. Lemma B.1).

Since a distinguished logarithm is continuous on the compact U and thus bounded, it

likewise holds that ψt ∈ L2
p(π) and

pψt ∈ L2
p(π).

As discussed in BLV, the measurement errors of the option-implied log CCF pψt arise

due to the observation, truncation, and discretization errors in the construction of the

corresponding option portfolios in equation (2.4). The next proposition establishes obser-

vational properties of this approximation in the Hilbert space L2
p(π). The proof is given

in Appendix B.2.

Proposition 1. Suppose Assumptions 1–4 hold. Then, for each t ∈ T, we have

pψt
P−→ ψt in L

2
p(π).

If, in addition, (α ∧ α) > 1/(2(q ∧ (1 + q))), we have, independently across t ∈ T,

∆
−1/2
t

(
pψt −ψt

) FX -s−−−→ N
(
0,K(t),S(t)

)
in L2

p(π),

where the FX-measurable covariance and relation operators, K(t) and S(t), are defined in

equations (B.18) and (B.19) in Appendix B.2.

Proposition 1 states that the measurement errors in pψt converge to zero as the (mini-

mum) number of options nt → ∞. In other words, the errors in option prices are ‘averaged

out’ when constructing the option-implied CCF according to equation (2.4) and taking

its logarithm. Moreover, if the log-moneyness limits −mt,τ and mt,τ grow sufficiently

fast, the measurement errors in pψt satisfy an FX-stable CLT. Here and throughout, we

use
FX -s−−−→ to denote FX-stable convergence, while in Appendix A we provide further

details on this form of convergence in the Hilbert space L2
p(π). For the measurement

errors in pψt, Proposition 1 establishes a limiting mixed-complex Gaussian distribution as

nt → ∞, whose FX-measurable covariance and relation operators K(t) and S(t) depend

on the particular realization of the path of the state vector xt. The functional form of

the established CLT proves to be useful for the estimation procedure that we develop in

what follows.
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3.2 Estimation

For the main methodological contribution of this paper, we now turn to divising our

functional estimation procedure for parametric option pricing models. As discussed in

Section 2, we restrict our attention to parametric models in the marginal-affine class.

The next assumption summarizes conditions we require from the parametric model:

Assumption 5. (i) The true parameter vector θ0 ∈ int(Θ), where Θ is a compact

parameters space containing admissible parameter values;

(ii) Under the risk-neutral measure Q, the CCF is of the exponential-affine form (2.5)

for θ0 and xt ∈ D at each t ∈ T;

(iii) αt(u, τ ; θ) and βt(u, τ ; θ) are continuous in u for all θ ∈ Θ, τ ∈ Tt, and t ∈ T.

Assumption 5(ii) strengthens Assumption 1(i) on the underlying process by imposing

a particular parametric form. It is satisfied for the majority of the parametric option

pricing models considered in the literature since it includes the widely employed AJD

class. The admissibility conditions on the parameter space in Assumption 5(i) reflect the

joint regularity conditions on D, v and λ that guarantee the existence of a solution to the

SDE (2.1). For a detailed discussion of general admissibility conditions in the AJD class,

see, e.g., Duffie and Kan (1996). Assumption 5(iii) further assures that ψt(·, τ ; θ, zt) in

equation (2.6) is the distinguished logarithm of φt(·, τ ; θ, zt) in equation (2.5).

Consistent with the notation employed so far, define the Cp-vectors ψt(u; θ, zt) =

αt(u; θ) − βt(u; θ)zt of model-implied log CCFs according to equation (2.6), depending

on zt ∈ Rd as well as the Cp-vectorsαt(u; θ) and Cp×d-matrices βt(u; θ) of affine coefficient

functions. By construction, only those elements of the residuals ξt(u; θ, zt) := pψt(u) −
ψt(u; θ, zt) corresponding to maturities in Tt can be non-zero. Recall that the introduced

objects should be viewed as vector- and matrix-valued functions of u.

To meaningfully formulate the estimation problem and asymptotic theory within our

Hilbert space setting, we maintain the following regularity conditions, which assure that

all relevant functions are contained in L2
p(π):

Assumption 6. For every t ∈ T and θ ∈ Θ, the following holds:

(i) Elements of αt(θ) and βt(θ) are in L2
1(π);

(ii) Elements of ∇θαt(θ), ∇θβt(θ) and ∇2
θαt(θ), ∇2

θβt(θ) are in L2
1(π);

(iii) Elements of ∇2
θαt(θ), ∇2

θβt(θ) are uniformly bounded in θ.

Assumption 6(i) is consistent with the fact that ψt(θ, zt) ∈ L2
p(π) for any given θ ∈ Θ

and zt ∈ Rd, since ψt(·, τ ; θ, zt) ∈ L2
1(π) as the distinguished logarithm of a model CCF.

Combined with pψt ∈ L2
p(π), this further yields that residuals satisfy ξt(θ, zt) ∈ L2

p(π). The
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supposed existence of derivatives in Assumption 6(ii) implies the continuity (elementwise

in L2
1(π)) of αt(θ), βt(θ) and ∇θαt(θ), ∇θβt(θ). Due to the compactness of Θ, these

functions are therefore uniformly bounded in θ. Accordingly, Assumption 6(iii) may

be replaced by continuity of second-order derivatives, which would imply the uniform

boundedness.

Under the imposed regularity conditions, let us define a criterion function QT that

measures the distance in L2
p(π) between the option-implied log CCF pψt and the model

log CCF ψt(θ, zt), i.e., the magnitude of the residuals ξt(θ, zt), in the option panel. Using

the L2
p(π) norm ∥·∥, we specifically take

QT (θ, {zt}t∈T) :=
∑
t∈T

wt ∥pψt −αt(θ)− βt(θ)zt∥2 (3.2)

with weights wt = 1/|Tt| that account for the time-varying number of observed option

maturities. The true parameter vector θ0 and the associated state vectors {xt}t∈T can be

estimated by minimizing the distance between the option-implied and model log CCFs

as quantified by QT :

(θ̃, {x̃t}t∈T) := argmin
θ∈Θ, {zt}t∈T⊂D

QT (θ, {zt}t∈T) . (3.3)

Problem (3.3) has a particular structure, which allows to concentrate out the state

vector. Concretely, the estimation problem (3.3) may be equivalently formulated as:

θ̃ := argmin
θ∈Θ

QT (θ, {x̃t(θ)}t∈T) (3.4)

with x̃t := x̃t(θ̃) for t ∈ T provided that states are uniquely identified, where for each

date t separately, parameter-dependent state estimates x̃t(θ) are formed according to

x̃t(θ) := argmin
zt∈D

∥pψt −αt(θ)− βt(θ)zt∥2. (3.5)

The restriction of the domain to the state space D ⊂ Rd acts as a possibly binding con-

straint. Hence, x̃t(θ) is the solution of a constrained complex-valued projection problem

that generally is not available in closed form. As such, problems (3.3) and (3.4) thereby

require joint numerical optimization of parameters and states, which makes them high-

dimensional problems that are computationally expensive to solve.

However, when relaxing the domain to Rd in problem (3.5), it is possible to provide a

closed-form solution. Usual rank conditions assure state identifiability, which are implied

by the following assumption:

Assumption 7. For every t ∈ T and θ ∈ Θ, the minimal singular value satisfies

σmin(⟨βt(θ),βt(θ)⟩) ≥ δσ > 0.
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In particular, by relaxing problem (3.5), we obtain parameter-dependent state estimates

pxt(θ) as follows:

pxt(θ) := argmin
zt∈Rd

∥pψt −αt(θ)− βt(θ)zt∥2. (3.6)

Problem (3.6) is an unconstrained complex-valued linear projection problem. With As-

sumptions 6 and 7 in place, it admits the following unique closed-form solution:20

pxt(θ) = ⟨βt(θ),βt(θ)⟩−1⟨pψt −αt(θ),βt(θ)⟩. (3.7)

Note that due to the Hermitian properties of the involved functions together with the

symmetry of U and π, it is automatically assured that pxt(θ) is real-valued. Obviously,

pxt(θ) coincides with x̃t(θ) whenever the constraint to D is non-binding.

Instead of problem (3.3), the true parameter vector θ0 and the associated state vectors

{xt}t∈T can therefore be estimated from the relaxation

(pθ, {pxt}t∈T) := argmin
θ∈Θ, {zt}t∈T⊂Rd

QT (θ, {zt}t∈T) . (3.8)

Concentrating out state estimates pxt(θ) according to problem (3.6), parameters and states

can be equivalently estimated from

pθ := argmin
θ∈Θ

QT (θ, {pxt(θ)}t∈T) (3.9)

with pxt := pxt(pθ) for all t ∈ T.
Provided correct model specification and the identification of the parameter vector

from the panel of log CCFs, the relaxation from problem (3.3) to (3.8) will be asymptot-

ically irrelevant. To ensure identification of the parameter vector, it suffices to impose

the following weak assumption on the behavior of a noise-free version of the objective

function in problem (3.9) after concentrating out optimal state estimates:

Assumption 8. For every ε > 0 and θ ∈ Θ, we have

inf
∥θ−θ0∥>ε

∑
t∈T

wt∥ψt(θ0)−αt(θ)− βt(θ)xt(θ)∥2 > 0 a.s.,

where xt(θ) := ⟨βt(θ),βt(θ)⟩−1⟨ψt(θ0)−αt(θ),βt(θ)⟩.

Given the outlined estimation procedure and the asymptotic setup, we can now state

the following formal consistency result. Its proof is given in Appendix B.3.

Proposition 2. Suppose Assumptions 1–8 hold. Then, as n→ ∞, we have that pθ
P−→ θ0

and pxt
P−→ xt for each t ∈ T.

20Here and throughout, for a Cp×d-valued function F and a Cp×k-valued function G, elements of

which are in L2
1(π), we extend the inner product notation as ⟨F,G⟩ =

∫
GH(u)F(u)π(du), yielding a

Ck×d matrix. Writing F = (f1, . . . , fd) and G = (g1, . . . ,gk) with fi,gi ∈ L2
p(π), the (i, j)-element of

⟨F,G⟩ is specifically given by ⟨fj ,gi⟩.
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Proposition 2 establishes that both the true time-invariant parameter vector θ0 and

the state vectors xt can be consistently estimated by solving the non-linear functional

least-squares problem (3.8), concentrating out latent states. The result is analogous to

solving a non-linear least-squares problem to minimize the distance between observed

and model-implied option prices (or implied volatility), as discussed in Section 2.

In addition, we obtain an FX-stable CLT for the joint asymptotic distribution of the

state vector estimators pxt at each point in time t ∈ T and of the time-invariant parameter

vector estimator pθ. The proof is given in Appendix B.4.

Proposition 3. Suppose Assumptions 1–8 hold and (α ∧ α) > 1/(2(q ∧ (1 + q))). Then,

as n→ ∞, we have

∆−1/2


px1 − x1

...

pxT − xT

pθ − θ0

 FX -s−−−→ N
(
0, A−1

T BTA
−T
T

)
, (3.10)

where the FX-measurable, real-valued matrices AT and BT are defined in equations (B.34)

and (B.35) in Appendix B.4.

The limiting distribution established in Proposition 3 is mixed-Gaussian with an FX-

measurable covariance matrix A−1
T BTA

−T
T that depends on the realization of the path

of the state vector xt. The mixing result implies that the precision in estimating the

state vector is itself random, depending on the information contained in the state vector

and option prices. For instance, high volatility days are often associated with increased

variance in option errors, leading to noisier state estimates.

The result in Proposition 3 is reminiscent of Theorem 2 in AFT with the main differ-

ence in the form of the mixing matrix. As displayed in equations (B.34) and (B.35), in

our case, the elements are given by the inner product of functions in the Hilbert space.

As the matrices AT and BT that characterize the asymptotic distribution in Proposi-

tion 3 depend on the true parameter and state vectors, θ and xt, as well as the unspecified

measurement error variance σ2
t (τ,m), the result is infeasible for practical implementation.

To obtain a feasible version of Proposition 3 in terms of corresponding consistent esti-

mators pAT and pBT , we essentially replace the true parameter and state vectors by their

estimated counterparts, pθ and pxt, respectively. For that, we replace the option error vari-

ance σ2
t (τ,m) by squared feasible option errors pζt(τ,m) := O(τ,m; pθ, pxt)− pOt(τ,m). This

construction is valid under sufficiently regular behavior of the model-implied option prices.

To formulate the regularity conditions, we denote by m(q, τ ; θ, z) the model-implied

moment-generating function (MGF) such that m(q, τ ; θ0,xt) = EQ[(Ft+τ/Ft)
q | Ft] holds.

Assumption 9. (i) O(m, τ ; θ, z) is continuous in θ and z for all m ∈ R and τ ≤ T ;
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(ii) There exists an ε > 0 such that for all θ ∈ Θ with ∥θ − θ0∥ < ε and z, z̃ ∈ Rd with

∥z̃− z∥ < ε the following holds: m(−q, τ ; θ, z̃) ≤ B(z) < ∞ and m(1 + q, τ ; θ, z̃) ≤
B(z) <∞ for all τ ≤ T as well as some q > 0 and q > 0.

Continuity of the model-implied option pricing function as in Assumption 9(i) is a

standard assumption, which immediately implies the consistency of the fitted option

prices O(τ,m; pθ, pxt) pointwise for each τ and m (as well as uniformly on each compact

subset of Θ×Rd). Employing the usual transform-based option pricing formulas, this form

of continuity may be related to sufficiently smooth behavior of the coefficient functions

α and β of the (unscaled) CCF. In addition, Assumption 9(ii) imposes locally uniform

bounds on the model-implied MGF in a neighborhood of the true parameter vector θ0

and any possible state vector. As a model-based counterpart to Assumption 1(ii), this

assumption regulates the tail behavior of the model-implied option pricing function, such

that the consistency also extends to certain integrals involving fitted option prices. With-

out loss of generality, we may take q and q identical to Assumption 1(ii).

With the additional regularity conditions in Assumption 9, we obtain that pAT
P−→ AT

and pBT
P−→ BT , leading to the following feasible version of Proposition 3. The proof is

given in Appendix B.5.

Proposition 4. Suppose Assumptions 1–9 hold and (α ∧ α) > 1/(2(q ∧ (1 + q))). Then,

as n→ ∞, we have

∆−1/2
pB
−1/2
T

pAT


px1 − x1

...

pxT − xT

pθ − θ0

 FX -s−−−→ N
(
0, I
)
, (3.11)

where the real-valued matrices pAT and pBT are consistent feasible estimators of AT and

BT , respectively, defined in equations (B.37) and (B.38) in Appendix B.5.

Although the feasible asymptotic expression in Proposition 4 explicitly involves the

grid size sequence ∆, it cancels out the corresponding terms in the feasible covariance

matrix pBT , making the feasible asymptotic result self-scaling.

We conclude this section with several remarks regarding our theoretical results. First,

we note that in most practically relevant cases, where D is characterized by simple non-

negativity constraints, the relaxation of problem (3.5) can be avoided. As shown in

Appendix D.1, one may instead directly obtain the constrained state estimator in equa-

tion (3.5) from an explicit two-stage procedure that is feasible for moderate dimension-

alities. Our theory in this section carries over to this alternative formulation of our

estimation approach using pxt(θ) = x̃t(θ), after minor adjustments in Assumption 5.

Moreover, we note again that researchers have the flexibility to specify an appropriate

measure π. While our exposition focuses on the more general case of continuous functional
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objects, our proposed estimation procedure and the derived asymptotic results apply

equally to discretized versions of these objects. For instance, in a similar framework,

Freire and Vladimirov (2023) compare the fit of parametric models to non-parametric

approaches such as PCA and autoencoders based on option-implied log CCFs evaluated

at a discrete set of arguments. The results established in this paper provide a theoretical

foundation for the estimation technique employed in that study, further highlighting the

flexibility and applicability of our framework. Appendix D.2 provides details on the

mapping of our results to a vector-valued representation with discrete CCF arguments.

Finally, we point the reader to further extensions of our theory in Appendix D.3, where

we develop diagnostic tests that may be used to formally evaluate the goodness-of-fit of a

model estimated using our proposed approach. Concretely, we suggest batteries of tests

based on the log CCF that naturally plays a central role within our approach (cf. Proposi-

tion D.2) and on more general option portfolios (cf. Proposition D.3). Special cases of the

latter in particular allow to evaluate option prices directly (cf. Corollary D.1), resembling

tests proposed in AFT, as well as VIX-type volatility indices (cf. Corollary D.2).

4 Simulations

To illustrate the finite-sample performance of the developed estimation procedure, we

consider a one-factor option pricing model with stochastic volatility, double-exponentially

distributed jumps in returns, and co-jumps in volatility. The likelihood of jumps is

additionally made stochastic and proportional to the stochastic variance. In particular,

we assume the following process, referred to in shorthand as ‘SVEJ’, for the forward price

Ft and state xt = vt under the risk-neutral probability measure Q:

dFt

Ft

=
√
vtdW1,t +

∫
R
(ex − 1) µ̃(dt, dx), (4.1)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t + µv

∫
R
x21{x<0} µ(dt, dx), (4.2)

where the two Brownian motions W1,t and W2,t are assumed to be correlated with

coefficient ρ, and the compensator for the jump measure is of the form ν̃t(dt, dx) =

λ(xt)dt⊗ ν(dx) with jump intensity λ(xt) = δvt and jump size measure

ν(dx) =

{
1− p

η+
e−x/η+

1{x≥0} +
p

η−
ex/η

−
1{x<0}

}
dx. (4.3)

Here, p is the probability of negative jumps, and η+ and η− are the conditional mean

jump sizes of positive and negative return jumps, respectively. We also allow the variance

to co-jump with negative jumps in returns, with the jump size proportional to the square

of the corresponding jump size in returns. The model specification has nine parameters

that are collected in the parameter vector θ = (κ, v̄, σ, ρ, δ, η+, η−, µv, p)
T.
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Although the model in equations (4.1) and (4.2) is a one-factor option pricing model,

it exhibits all main features of modern option pricing models: stochastic volatility,

(co-)jumps in returns and volatility, time-varying stochastic jump intensity, and self-

excitation. Furthermore, it is related to many popular option pricing models with double-

exponential jump sizes considered in the literature (e.g., Kou, 2002, AFT, Andersen et

al., 2020, and Bardgett et al., 2019).

Importantly, the SVEJ model in equations (4.1) and (4.2) belongs to the class of AJD

models. Hence, it exhibits an affine functional dependence of the log CCF ψt(u, τ) on the

state vector xt = vt:

ψt(u, τ) = α
(

u√
τκt,τ

, τ ; θ
)
+ β

(
u√
τκt,τ

, τ ; θ
)
vt,

where α(u, τ ; θ) and β(u, τ ; θ) are solutions to the complex-valued ODE system:
α̇(u, t) = κv̄β(u, t),

β̇(u, t) = −iu
(
1
2
+ δ (χ(1, 0)− 1)

)
− κβ(u, t)− u2

2
+ iuρσβ(u, t) + 1

2
σ2β2(u, t)

+ δ (χ(iu, β(u, t))− 1) ,

with initial conditions α(u, 0) = β(u, 0) = 0 and ‘jump transform’ of the form

χ(c1, c2) =
1− p

1− c1η+
+

p

η−

∫ 0

−∞
e(c1+1/η−)x+c2µvx2

dx. (4.4)

Our interest is in estimating the nine risk-neutral parameters of the SVEJ model.

Therefore, we ignore a possibly different dynamic under the physical measure, and simu-

late T = 504 time points with ∆t = 1/252 from the same risk-neutral specification (4.1)–

(4.3) using an Euler-Maruyama scheme.

Given the simulated paths of log prices and spot volatility, we generate the option data

using the COS method of Fang and Oosterlee (2009). In particular, at each point in time t,

we simulate options with four maturities of 1, 3, 6, and 12 months, and equidistant strike

prices with ∆k = emt,τ (j)−emt,τ (j−1) = 0.01. To investigate the finite-sample performance

of our asymptotic results, we keep the range of strike prices for each maturity sufficiently

wide such that the truncation errors in the option-implied CCFs are minimal.21 The

generated option prices are distorted by adding observation errors of the form

pOt(τ,m) = Ot(τ,m) + 0.001× κt(τ,m) νt(τ,m)√
τ

× ϵt(τ,m),

where κt(τ,m) and νt(τ,m) are the Black-Scholes implied volatilities (BSIV) and Black-

Scholes vegas, respectively, and ϵt(τ,m) are i.i.d. standard normal random variables. The

noisy option prices, expressed in terms of total implied variances, are then interpolated

using a cubic spline and extrapolated linearly in log-moneyness, as described in Ap-

pendix C.1 of BLV. Finally, the option-implied CCFs are constructed using the Riemann

sum approximation as in equation (2.4).

21In Appendix E.1, we also provide results for a more realistic strike range setup.
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Figure 1: Option, parameter, and state vector fit for different levels of s
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0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5
#10-2

order = 6
order = 10
order = 14

(c) Parameter RMSPE
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Note: This figure plots the RMSE and RMSPE for BSIV, RMSPE for parameters, and RMSE for the state vector for

different values of volatility s and three different quadrature orders. The parameters for the SVEJ model are the same as

in Table E.2.

As discussed in Section 3, we work with a class L2
p(π) of functions that are square-

integrable with respect to a finite measure π. We choose π(du) = ϕ(u; s)du to be gen-

erated by a Gaussian PDF ϕ(u; s) with zero mean and variance s2, although any other

(symmetric) density function could also be utilized. This choice of the density function is

common in the related C-GMM literature (e.g., Carrasco and Kotchoni, 2017) and allows

us to approximate integrals using Gauss-Hermite quadrature, as described in Appendix C.

Since in our estimation procedure we would like to control the relative importance of in-

formation contained at different arguments of the log CCF, the scale parameter s plays

the role of a tuning parameter. In particular, it allows downweighting function values

evaluated at larger arguments u with lower signal-to-noise ratio. Therefore, first, we in-

vestigate the role of this parameter on the estimation results. Additionally, we explore

the robustness to the choice of the quadrature order.

In particular, we run 100 simulations for different levels of s and quadrature orders
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using the same parameter values for the model as we use in the following Monte Carlo

exercise. We assess the optimal level of s via four metrics. First, we look at the fit of

option prices by considering the Monte Carlo root mean square error (RMSE) and the root

mean square percentage error (RMSPE) of implied volatilities. Although our estimation

is conducted using log CCFs and does not require the explicit evaluation of option prices,

we can nevertheless assess the pricing accuracy given the parameter and state estimates

of the parametric model. Importantly, these metrics can be easily employed in practice

to choose the tuning parameter and are commonly used in the literature. Next, to assess

the relative accuracy of parameter estimates for a given scale s, we construct the RMSPE

for model parameters. Finally, we compute the RMSE between the estimated and the

true state variables, which in case of this model is stochastic volatility.

Figure 1 plots the four metrics for different levels of s and three quadrature orders.

As we can see, the metrics are generally U-shaped and indicate the optimal range of the

scale level between s = 0.6 and s = 0.8. Importantly, deviations from this range lead

only to a marginal increase in all four measures. In the first two panels of Figure 1, we

also display the RMSE and RMSPE metrics for the true option errors, which are larger

than the metrics based on the estimated parameters for the optimal range of the scale

level. This indicates that the parameter estimates yield values of these metrics similar

to what one could have obtained when explicitly minimizing option pricing errors. The

results are also robust to the choice of the order in the Gauss-Hermite quadrature rule.

In the following simulation exercises, we consider s = 0.7 and the quadrature order of 10.

Table 1: Monte Carlo results for the SVEJ model

κ v̄ σ ρ δ p η− η+ µv MEv

true 2.0000 0.02000 0.2000 -0.8000 100.000 0.7000 0.0700 0.0400 1.5000 0.00000

mean 1.9999 0.02000 0.2000 -0.8000 100.115 0.6995 0.0700 0.0400 1.4997 0.00000

MC std 0.0024 0.00004 0.0004 0.0007 0.6287 0.0029 0.0001 0.0002 0.0027 0.00011

As. std 0.0016 0.00002 0.0003 0.0007 0.6561 0.0037 0.0001 0.0003 0.0019 0.00007

q10 1.9969 0.01995 0.1995 -0.8008 99.456 0.6963 0.0699 0.0397 1.4962 -0.00003

q50 2.0000 0.02000 0.2000 -0.7999 100.099 0.6996 0.0700 0.0400 1.4997 0.00000

q90 2.0030 0.02004 0.2005 -0.7991 100.810 0.7024 0.0701 0.0402 1.5032 0.00004

Note: This table provides Monte Carlo simulation results for the SVEJ model. For each parameter, we report the true

value, the Monte Carlo mean and standard deviation, the asymptotic standard deviation, and the 10th, 50th and 90th

Monte Carlo percentiles. The last column reports the same descriptive statistics for the mean errors of the estimated state

(MEv).

Table 1 provides the Monte Carlo results for the SVEJ model parameters based on

N = 1000 replications. The simulation results show a very good finite-sample perfor-

mance for all parameters of the model as well as the state estimation. Furthermore,

the asymptotic standard deviations, defined as the square root of the average estimated

asymptotic variance, correspond to the Monte Carlo standard errors, indicating the valid-

24



ity of the feasible standard error construction. We emphasize that we ran the simulation

on a regular laptop, with each iteration taking less than a half minute.

In Appendix E.1, we provide additional simulation results for a one-factor model with

Gaussian jumps in returns and exponential co-jumps in variance, as well as for two-factor

extensions of these one-factor models with a separate stochastic jump intensity factor.

The reported results indicate the robustness of the good finite-sample performance across

different model specifications.

5 Empirical Applications

5.1 Data

We illustrate the developed estimation procedure using the widely considered European-

style options on the S&P 500 stock market index available through OptionMetrics. Lever-

aging the computational efficiency of our method, we analyze a rather large panel with

daily observations covering the period from January 1996 to August 2023. To balance

the growing amount of available maturities toward the end of the sample, we focus on

AM-settled options with maturities between 7 calendar days and 1 year. This limits the

number of maturities per day to at most twelve, but the maturities and their number

may vary from day to day in the constructed sample. We work with mid-quote option

prices after applying standard filters that rule out illiquid observation with (i) zero bid

quotes, (ii) bids exceeding ask quotes, (iii) ask-to-bid ratios exceeding a factor of 20, and

(iv) distance between adjacent strike prices larger than $300.

Since the inputs of our estimation procedures are log CCFs constructed via portfolios

of options, we need a reliable and relatively wide coverage of option strikes at each ma-

turity. This is also in line with the large-n asymptotic scheme underlying our theory. For

this reason, we retain option observations that satisfy the following criteria per maturity:

(i) the number of distinct strike prices is larger than 15, (ii) the number of put-call pairs

is at least 5, (iii) the number of OTM calls and OTM puts is at least 3, (iv) the largest

standardized moneyness exceeds 1 and the smallest standardized moneyness is below −3,

and (v) there is at least one other maturity on the same day for which option observations

satisfy the above four criteria. This results in a selection of 4,741,456 contracts covering

6,853 trading days, which is by far the largest option panel, both in the time-series and

cross-sectional dimensions, considered in the related estimation literature.

To reduce the impact of the truncation and discretization errors in the option-implied

log CCF approximation, we employ an interpolation-extrapolation scheme following BLV.

Specifically, we interpolate option prices expressed in terms of their Black-Scholes implied

variances using cubic splines with carefully selected knot sequences. The latter are chosen

such that the option observations at the knots satisfy standard no-arbitrage conditions
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and their ask-to-bid ratios are smaller than 5. We also extrapolate the implied vari-

ances beyond the observable strike range linearly in log-moneyness m, consistent with the

asymptotic behavior established in Lee (2004). For further details on the interpolation-

extrapolation scheme, we refer to Appendix C.1 in BLV. The option-implied log CCFs for

each day and for each maturity are constructed using the Riemann sum approximation

in equation (2.4) applied to the result of the interpolation-extrapolation scheme.

5.2 Empirical results

Using the constructed log CCF panel, we estimate the one-factor parametric option pric-

ing model described in Section 4, as well as its two-factor extension. In Appendix E.2, we

provide additional empirical results for the one- and two-factor model specifications with

Gaussian jump size distributions. As discussed in Section 4, we choose π(du) = ϕ(u; s)du

using a Gaussian PDF ϕ(u; s) with zero mean and scale parameter s and employ a Gauss-

Hermite quadrature rule of order 10 to evaluate inner products. We report the results

based on the scale s that yields the lowest RMSPE on BSIV after estimating the models

over a finite grid of possible scale values. The standard errors for the parameter estimates

are obtained using the feasible asymptotic distribution result established in Proposition 4.

The results for the one-factor SVEJ model are reported in Table 2. The parameter

estimates are reasonable and broadly in line with those found in the related literature

(see, e.g., AFT and Andersen et al., 2020). The estimates imply a mean jump size in

volatility of approximately 11.5% and an unconditional (risk-neutral) expected volatility

level of 25.6%.

Table 2: Parameter estimates of the SVEJ model

κ v̄ σ ρ δ p η− η+ µv

pθ 1.8195 0.0142 0.2086 -0.6855 145.40 0.7359 0.0695 0.0375 1.3801

s.e. 0.0104 0.0001 0.0021 0.0047 3.160 0.0128 0.0003 0.0010 0.0092

Note: This table reports the parameter estimates and the standard errors for the one-factor SVEJ model given

the scale s = 0.6.

Figure 2 plots the estimated volatility from the SVEJ model along with the non-

parametric spot volatility measure22 of Todorov (2019) and the VIX index. We notice

that our state estimates exhibit a similar time-series pattern as the other two measures

of volatility, although they are obtained on each day separately. The estimated volatility

also lies below the VIX index and is close to the non-parametric spot volatility measure.

This indicates that the volatility estimates obtained from the SVEJ model effectively

capture the underlying volatility dynamics in the market.

22We are thankful to Viktor Todorov for kindly sharing this data.
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Figure 2: Estimated states from the SVEJ model
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Note: This figure plots the square root of the estimated states from the SVEJ model along with the non-

parametric spot volatility measure of Todorov (2019) and the VIX index.

As an extension of the SVEJ model, we also consider a two-factor option pricing

model that incorporates an additional factor for jump intensity. We model the jump

intensity as a Hawkes process with jump sizes in intensity proportional to the square

of negative jumps in returns. Thus, the jump size measure remains the same as in the

one-factor specification. We label this model as ‘SVHEJ’ and detail its specification

in Appendix E.1 (see equations (E.9)–(E.11)). The estimation results for the two-factor

model are reported in Table 3. The estimates related to the stochastic volatility factor are

generally close to those obtained under the one-factor specification. Differences in some

parameters, e.g., the long-run volatility v̄ and the volatility jump size coefficient µv, can

be attributed to the inclusion of a separate stochastic process for the jump intensity. The

parameter estimates for the jump intensity dynamics are comparable to those obtained

in a univariate specification for the SPX options in Boswijk et al. (2023). In particular,

every new jump arrival increases the jump intensity, on average, by a factor of 0.94, which

subsequently mean-reverts to the base intensity level λ̄ = 0.11. This translates into an

unconditional expected jump intensity of around 0.42, i.e., the market expects jumps to

occur on average once in just over two years.

Figure 3 illustrates the estimated states from the SVHEJ model. The left panel plots

the estimated volatility states alongside the non-parametric spot volatility measure of
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Table 3: Parameter estimates of the SVHEJ model

κ v̄ σ ρ p η− η+ µv κλ λ̄ µλ

pθ 2.2201 0.0262 0.3413 -0.8585 0.7213 0.0964 0.0452 4.078 1.2732 0.1107 70.44

s.e. 0.0109 0.0001 0.0021 0.0038 0.0111 0.0004 0.0011 0.042 0.0126 0.0057 1.541

Note: This table reports the parameter estimates and the standard errors for the two-factor SVHEJ model given the scale

s = 0.5.

Figure 3: Estimated states from the SVHEJ model
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Note: This figure plots the estimated states from the two-factor SVHEJ model. In particular, the left panel displays the

square root of the estimated volatility along with the non-parametric spot volatility measure of Todorov (2019) and the

right panel plots the estimated jump intensity.

Todorov (2019), while the right figure displays the estimates of the jump intensity. The

volatility estimates from the two-factor specification are even more aligned with the non-

parametric spot volatility than the estimates from the one-factor model. Notably, the

time-series of jump intensity estimates resembles a path of a typical self-exciting process:

it quickly increases during turbulent periods such as the global financial crisis in 2008

and the covid-19 pandemic, and then it subsequently mean-reverts to its base level.

6 Conclusion

This paper proposes a novel risk-neutral estimation procedure for parametric option pric-

ing models. Using an observed option panel, our procedure minimizes the distance be-

tween two functions across different maturities and dates: the logarithm of the option-

implied conditional characteristic function (CCF) of (standardized) log underlying re-

turns, which can be approximated from a portfolio of observed option prices, and the

model-implied counterpart. Within the marginal-affine class of models, for which the

CCF is exponentially affine in the latent state vector, we can concentrate out the state

vectors in closed form by solving a linear functional least-squares problem on each date in
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the panel. This allows us to optimize only over the model’s parameter space, circumvent-

ing the typical computational costs when estimating parametric option pricing models

and avoiding the need to downsample the available option data prior to the estimation.

Within our proposed estimation approach, we prove consistency of the model param-

eter and state estimators and derive their mixed-Gaussian limiting joint distribution, for

which we also provide a feasible version. These asymptotic results derive from the es-

tablished consistency and stable functional CLT of option-implied log CCFs. Extensive

Monte Carlo simulations support the favorable finite-sample performance of our esti-

mation approach. In an empirical application, we moreover illustrate the usefulness of

our estimation procedure using by far the largest option panel considered in the related

literature.

Although, in this paper, we have focused on the marginal-affine class of models, which

admits closed-form estimates for latent state vectors, a similar CCF-based estimation

framework can be applied to more general non-affine parametric models. However, the

latter still requires tractability of the parametric CCF, but also solving a non-linear

least-squares problem numerically. The proposed procedure can be further extended to

include economic regularization as in Andersen et al. (2015a), when needed, and can

be incorporated into full estimation methods. The latter we intend to explore in future

research.
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Appendices

A Limit theorems in a Hilbert space

Throughout, consider an F -measurable, L2
p(π)-valued random sequence (fn)n∈N with limit

f . For our purposes, we are interested exclusively in the case where f follows a complex

Gaussian distribution N (0, K, S) with covariance operator K and relation operator S.

For convergence in distribution, we say that fn
d−→ f in L2

p(π) if E[ϕ(fn)] → E[ϕ(f)] for
all ϕ ∈ Cb(L

2
p(π)), the set of all (complex-valued) bounded and continuous functionals ϕ :

L2
p(π) → C. Equivalently, we write fn

d−→ N (0, K, S). By Theorem 1.8.4 of van der Vaart

and Wellner (2023) (see also the discussion in X. Chen and White, 1998), convergence

in distribution in L2
p(π) is characterized by tightness of the sequence and convergence in

distribution of the marginals.

Proposition A.1. The following are equivalent:

(i) fn
d−→ N (0, K, S) in L2

p(π);

(ii) (fn)n∈N is tight and ⟨fn,h⟩
d−→ N (0, ⟨h, Kh⟩, ⟨h, Sh⟩) for all h ∈ L2

p(π).

For the stronger notion of G-stable convergence given some sub-σ-algebra G ⊂ F ,

we say that fn
G-s−−→ f in L2

p(π) if E[Y ϕ(fn)] → E[Y ϕ(f)] for all ϕ ∈ Cb(L
2
p(π)) and

every Y ∈ L∞(G), the set of (complex-valued) bounded G-measurable random variables.

Equivalently, we write fn
G-s−−→ N (0, K, S). Extending Proposition A.1, stable convergence

in L2
p(π) is likewise characterized by tightness of the sequence and stable convergence of

the marginals.

Proposition A.2. The following are equivalent:

(i) fn
G-s−−→ N (0, K, S) in L2

p(π);

(ii) (fn)n∈N is tight and ⟨fn,h⟩
G-s−−→ N (0, ⟨h, Kh⟩, ⟨h, Sh⟩) for all h ∈ L2

p(π).

Proof. Since the unit constant function 1 ∈ L2
1(π), we may consider g = Y 1 ∈ L2

1(π).

The statement of the proposition will follow if, for f̃n := (fn; g) and f̃ := (f ; g), we can

show that f̃n
d−→ f̃ in L2

p+1(π) is equivalent to both (i) and (ii).

For (ii), we use the equivalent characterization in Proposition A.1. Note that (fn)n∈N

is tight if and only if (f̃n)n∈N is tight, due to the boundedness of Y . Moreover, given any

h ∈ L2
p(π), from Proposition 3.12 in Häusler and Luschgy (2015), ⟨fn,h⟩

G-s−−→ ⟨f ,h⟩ if and
only if (⟨fn,h⟩, Y )

d−→ (⟨f ,h⟩, Y ) for all Y ∈ L∞(G). Recall that for any (scalar) random

sequences (Xn, Yn) with limit (X, Y ), we have equivalence between (Xn, Yn)
d−→ (X, Y )

and w1Xn + w2Yn
d−→ w1X + w2Y for all w1, w2 ∈ C, by a complex-valued version of
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the Cramér-Wold Theorem. Therefore, observing that w1⟨f ,h⟩ + w2Y = ⟨f̃ , h̃⟩ with

h̃ = (w1h; (w2/µ(U))1) ∈ L2
p+1(π), it follows that ⟨fn,h⟩

G-s−−→ ⟨f ,h⟩ for all h ∈ L2
p(π) if

and only if ⟨f̃n, h̃⟩
d−→ ⟨f̃ , h̃⟩ for all h̃ ∈ L2

p+1(π) and Y ∈ L∞(G). In conclusion, f̃n
d−→ f̃

in L2
p+1(π) is equivalent to (ii).

For (i), note that for any ϕ ∈ Cb(L
2
p(π)) and Y ∈ L∞(G), choosing ϕ̃(f̃) = ϕ(f) g yields

ϕ̃ ∈ Cb(L
2
p+1(π)) and, due to the convergence in distribution, E[Y ϕ(fn)] → E[Y ϕ(f)].

Hence, f̃n
d−→ f̃ in L2

p+1(π) immediately implies fn
G-s−−→ f in L2

p(π). For the reverse

direction, invoking a functional generalization of the Weierstrass Theorem (e.g., Bruno,

1984), we may find for any ε > 0 and M > 0 a uniform ε-approximation of any ϕ̃ ∈
Cb(L

2
p+1(π)) such that∣∣∣∣∣ϕ̃(f̃)−

N∑
i=1

ρi(g)ϕi(f)

∣∣∣∣∣ < ε for all ∥f∥ ≤M,

where ρi ∈ Cb(L
2
1(π)) and ϕi ∈ Cb(L

2
p(π)). In light of the tightness of (fn)n∈N (by (ii)),

choose M > 0 large enough so that P[∥f∥ > M ] < ε and P[∥fn∥ > M ] < ε for all n.

Then, distinguishing the cases where ∥f∥ ≤M and ∥f∥ > M , we have∣∣∣∣∣E[ϕ̃(f̃)]− E

[
N∑
i=1

ρi(g)ϕi(f)

]∣∣∣∣∣ < ε(1 +M ′)

and likewise for each fn, uniformly for some M ′ > 0 that reflects the bounds of the func-

tionals. Hence, noting that each ρi(g) ∈ L∞(G), it follows that E[Y ϕ(fn)] → E[Y ϕ(f)]
for all ϕ ∈ Cb(L

2
p(π)) and Y ∈ L∞(G) implies E[ϕ̃(f̃n)] → E[ϕ̃(f̃)] for all ϕ̃ ∈ Cb(L

2
p+1(π)).

Therefore, fn
G-s−−→ f in L2

p(π) implies f̃n
d−→ f̃ in L2

p+1(π). In other words, f̃n
d−→ f̃ in

L2
p+1(π) is also equivalent to (i).

B Proofs of main results

B.1 Preliminary results

Lemma B.1. Suppose Assumptions 1–3 and 4(i) hold. Then, for fixed t ∈ T and τ ∈ Tt,

we have that

sup
u∈U

∣∣
pφt(u, τ)− φt(u, τ)

∣∣ = OP

(√
log nt,τ

nt,τ

∨ n−(qα∧(1+q)α)

t,τ

)
.

Proof. Since t and τ are fixed, for notational convenience let us denote throughout the

proof mj := mt,τ (j). We start by analyzing the errors in the option-implied CCF. Follow-

ing BLV and Todorov (2019), the total measurement errors in the CCF approximation can

be decomposed as pφt(u, τ)−φt(u, τ) =
∑3

i=1 ζ
(i)
t (u, τ), where ζ

(i)
t (u, τ) := ut,τ (u) ζ̃

(i)
t (u, τ)
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with ut,τ (u) :=
u2

τκ2
t,τ

+ i u√
τκt,τ

and

ζ̃
(1)
t (u, τ) := −

nt,τ∑
j=2

e
(i u√

τκt,τ
−1)mj

ζt(τ,mj)∆t,τ (j), (B.1)

ζ̃
(2)
t (u, τ) :=

∫ mt,τ

−∞
e
(i u√

τκt,τ
−1)m

Ot(τ,m) dm+

∫ ∞

mt,τ

e
(i u√

τκt,τ
−1)m

Ot(τ,m) dm, (B.2)

ζ̃
(3)
t (u, τ) :=

nt,τ∑
j=2

∫ mj

mj−1

(
e
(i u√

τκt,τ
−1)m

Ot(τ,m)− e
(i u√

τκt,τ
−1)mj

Ot(τ,mj)
)
dm. (B.3)

The error terms ζ
(1)
t (u, τ), ζ

(2)
t (u, τ) and ζ

(3)
t (u, τ) are referred to as observation, trunca-

tion and discretization errors, respectively.

For the observation errors, invoking Lemma 1 in BLV, we obtain

E
[
|ζ̃(1)t (u, τ)|2 | FX

]
≤

nt,τ∑
j=2

e−2mj E
[
ζt(τ,mj)

2 | FX
]
(∆t,τ (j))

2

≤ OP(1)∆t,τ

nt,τ∑
j=2

e−2mj O2
t (τ,mj)∆t,τ (j)

≤ OP(1)∆t,τ

nt,τ∑
j=2

e−2mj e2(−qmj∧(1+q)mj) ∆t,τ (j)

≤ OP(1)∆t,τ = oP(1).

The second inequality results from Assumption 2(iii) and the measurement error spec-

ifications in Assumption 3, in particular Assumption 3(iii); for the third inequality, we

use Lemma 1 in BLV together with Assumption 1(ii); the final inequality follows since

under the employed asymptotic scheme the summation converges to a finite integral.

Hence, ζ̃
(1)
t (u, τ) = OP

(√
lognt,τ

nt,τ

)
= OP

(√
∆t,τ

)
. Lemma 2 in BLV moreover provides

the rates for the truncation and discretization errors: ζ̃
(2)
t (u, τ) = OP

(
n
−(qα∧(1+q)α)

t,τ

)
and

ζ̃
(3)
t (u, τ) = OP

(
lognt,τ

nt,τ

)
= OP(∆t,τ ). Importantly, the rates of convergence do not depend

on the argument u, yielding that each convergence is uniform on U .
Since Assumption 4(i) implies that ut,τ is bounded on the bounded set U , it further

follows from their definition that the same rates of convergence hold for ζ
(i)
t (u, τ), where

each convergence is again uniform on U . Therefore, we obtain that

pφt(u, τ)− φt(u, τ) = OP

(√
log nt,τ

nt,τ

)
+OP

(
n
−(qα∧(1+q)α)

t,τ

)
+OP

(
log nt,τ

nt,τ

)

= OP

(√
log nt,τ

nt,τ

∨ n−(qα∧(1+q)α)

t,τ

)

uniformly on U .
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Lemma B.2. Suppose Assumptions 1–4 hold with (α ∧ α) > 1/(2(q ∧ (1 + q))). Then,

for fixed t ∈ T and τ ∈ Tt, we have

∆
−1/2
t,τ ⟨pφt(·, τ)− φt(·, τ), h⟩

FX -s−−−→ N
(
0,Σ(t,τ)(h),Γ(t,τ)(h)

)
(B.4)

for all h ∈ L2
1(π), where Σ(t,τ)(h) = ⟨h,K(t,τ)h⟩ and Γ(t,τ)(h) = ⟨h, S(t,τ)h⟩ and the FX-

measurable covariance and relation operators, K(t,τ) and S(t,τ), are integral operators with

kernels given by

k(t,τ)(u1, u2) := ut,τ (u1) ut,τ (u2)

∫
e
(i

u2−u1√
τκt,τ

−2)m
σ2
t (τ,m)δt,τ (m)dm, (B.5)

s(t,τ)(u1, u2) := ut,τ (u1) ut,τ (u2)

∫
e
(i

u2+u1√
τκt,τ

−2)m
σ2
t (τ,m)δt,τ (m)dm, (B.6)

respectively, with ut,τ (u) :=
u2

τκ2
t,τ

+ i u√
τκt,τ

.

Proof. Similar to the proof of Lemma B.1, since t and τ are fixed, we denotemj := mt,τ (j).

We will first show the FX-stable CLT

∆
−1/2
t,τ ⟨ζ(1)t (·, τ), h⟩ FX -s−−−→ N

(
0,Σ(t,τ)(h),Γ(t,τ)(h)

)
(B.7)

for any h ∈ L2
1(π).

It is notationally convenient to set ∆
−1/2
t,τ ζ

(1)
t (u, τ) =

∑nt,τ

j=2 f
(t,τ)
j (u), defining

f
(t,τ)
j (u) := −∆

−1/2
t,τ ut,τ (u) e

(i u√
τκt,τ

−1)mj
ζt(τ,mj)∆t,τ (j).

For all h ∈ L2
1(π), we can write

⟨f (t,τ)
j , h⟩ =

∫
f
(t,τ)
j (u)h(u)π(du)

= ∆
−1/2
t,τ e−mjζt(τ,mj)∆t,τ (j)

∫
−ut,τ (u) e

i u√
τκt,τ

mj
h(u)π(du)︸ ︷︷ ︸

=:I
(t,τ)
j (h)

= ∆
−1/2
t,τ e−mjζt(τ,mj)I

(t,τ)
j (h)∆t,τ (j)

with |I(t,τ)j (h)| ≤ M∥h∥ < ∞ uniformly bounded for some M > 0, using the Cauchy-

Schwarz inequality and Assumption 4(i). Moreover, Assumption 3 implies that ⟨f (t,τ)
j , h⟩

for j = 1, . . . , nt,τ are FX-conditionally independent random variables with zero mean

and finite variances of the form

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | FX

]
= E

[∫∫
f
(t,τ)
j (u1)h(u1)f

(t,τ)
j (u2)h(u2)π(du1)π(du2) | FX

]
=

∫∫
E
[
f
(t,τ)
j (u1)f

(t,τ)
j (u2) | FX

]
h(u1)h(u2)π(du1)π(du2)

=

∫
h(u2)K

(t,τ)
j h(u2)π(du2)

= ⟨h,K(t,τ)
j h⟩,
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where the integral operator

K
(t,τ)
j h(u2) =

∫
E
[
f
(t,τ)
j (u2)f

(t,τ)
j (u1) | FX

]
h(u1)π(du1)

=

∫
k
(t,τ)
j (u1, u2)h(u1)π(du1)

with the kernel k
(t,τ)
j (u1, u2) = E

[
f
(t,τ)
j (u2)f

(t,τ)
j (u1) | FX

]
.

To appeal to the stable CLT in Proposition 6.1 of Häusler and Luschgy (2015), the

sequence of {⟨f (t,τ)
j , h⟩}j=1,2,... given some h ∈ L2

1(π) is expressed as a square-integrable

martingale difference array, after suitable permutation of strikes. We therefore define the

filtration {F̃ (t,τ)
j }j=0,1,... by

F̃ (t,τ)
j = FX ∨ σ

(
{ζt(τ,mi)}i=1,...,j

)
, j = 0, 1, . . . ,

which form a nested sequence as nt,τ → ∞ due to the nested construction of the log-

moneyness strike grids. For the limiting σ-algebra, we set F̃ (t,τ) :=
∨

j F̃
(t,τ)
j ⊃ FX .

In particular, note that ⟨f (t,τ)
j , h⟩ is F̃ (t,τ)

j -adapted with

E
[
⟨f (t,τ)

j , h⟩ | F̃ (t,τ)
j−1

]
= E

[
⟨f (t,τ)

j , h⟩ | FX
]
= 0

as well as conditional variance and pseudo-variance given by

nt,τ∑
j=2

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | F̃ (t,τ)

j−1

]
=

nt,τ∑
j=2

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | FX

]
P−→ Σ(t,τ)(h),

nt,τ∑
j=2

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | F̃ (t,τ)

j−1

]
=

nt,τ∑
j=2

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | FX

]
P−→ Γ(t,τ)(h),

where Σ(t,τ)(h) and Γ(t,τ)(h) are FX-measurable with E[Σ(t,τ)(h)] <∞ and E[Γ(t,τ)(h)] <

∞.

The FX-measurable asymptotic variance Σ(t,τ)(h) and pseudo-variance Γ(t,τ)(h) can

be found via the convergence of the respective covariance and relation operators. In

particular, we obtain for the variance that

∆−1
t,τ E

[
⟨ζ(1)t (·, τ), h⟩⟨ζ(1)t (·, τ), h⟩ | FX

]
=

nt,τ∑
j=2

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | FX

]
=

nt,τ∑
j=2

⟨h,K(t,τ)
j h⟩ =

〈
h,

nt,τ∑
j=2

K
(t,τ)
j h

〉
P−→ ⟨h,K(t,τ)h⟩ =: Σ(t,τ)(h),

where the covariance operator is given by

K(t,τ)h(u2) =

∫
k(t,τ)(u1, u2)h(u1)π(du1)
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with kernel as in equation (B.5) obtained through

nt,τ∑
j=2

k
(t,τ)
j (u1, u2) =

nt,τ∑
j=2

E
[
f
(t,τ)
j (u2)f

(t,τ)
j (u1) | FX

]
=

nt,τ∑
j=2

ut,τ (u1) ut,τ (u2) e
(i

u2−u1√
τκt,τ

−2)mjE[ζ2t (τ,mj) | FX ]
(∆t,τ (j))

2

∆t,τ

= ut,τ (u1) ut,τ (u2)

nt,τ∑
j=2

e
(i

u2−u1√
τκt,τ

−2)mj
σ2
t (τ,mj)

(∆t,τ (j))
2

∆t,τ

P−→ ut,τ (u1) ut,τ (u2)

∫
e
(i

u2−u1√
τκt,τ

−2)m
σ2
t (τ,m)δt,τ (m)dm =: k(t,τ)(u1, u2).

Similarly, we find for the pseudo-variance that

∆−1
t,τ E

[
⟨ζ(1)t (·, τ), h⟩⟨ζ(1)t (·, τ), h⟩ | FX

]
=

nt,τ∑
j=2

E
[
⟨f (t,τ)

j , h⟩⟨f (t,τ)
j , h⟩ | FX

]
=

nt,τ∑
j=2

⟨h, S(t,τ)
j h⟩ =

〈
h,

nt,τ∑
j=2

S
(t,τ)
j h

〉
P−→ ⟨h, S(t,τ)h⟩ =: Γ(t,τ)(h),

where the relation operator S
(t,τ)
j is an integral operator with kernel s

(t,τ)
j (u1, u2) =

E
[
f
(t,τ)
j (u2)f

(t,τ)
j (u1) | FX

]
, and the kernel of the relation operator S(t,τ) as in equa-

tion (B.6) is found via

nt,τ∑
j=2

s
(t,τ)
j (u1, u2) =

nt,τ∑
j=2

E
[
f
(t,τ)
j (u2)f

(t,τ)
j (u1) | FX

]
=

nt,τ∑
j=2

ut,τ (u1) ut,τ (u2) e
(i

u2+u1√
τκt,τ

−2)mjE[ζ2t (τ,mj) | FX ]
(∆t,τ (j))

2

∆t,τ

= ut,τ (u1) ut,τ (u2)

nt,τ∑
j=2

e
(i

u2+u1√
τκt,τ

−2)mj
σ2
t (τ,mj)

(∆t,τ (j))
2

∆t,τ

P−→ ut,τ (u1) ut,τ (u2)

∫
e
(i

u2+u1√
τκt,τ

−2)m
σ2
t (τ,m)δt,τ (m)dm =: s(t,τ)(u1, u2).

To invoke Proposition 6.1 of Häusler and Luschgy (2015), it remains to verify a con-

ditional form of Lindeberg’s condition, which is implied by the following conditional form

of Lyapunov’s condition for some 0 < c ≤ 2 (see Remark 6.8 in Häusler and Luschgy
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(2015)):

nt,τ∑
j=2

E
[∣∣⟨f (t,τ)

j , h⟩
∣∣2+c | F̃ (t,τ)

j−1

]
=

nt,τ∑
j=2

E
[∣∣⟨f (t,τ)

j , h⟩
∣∣2+c | FX

]
= ∆

−(1+c/2)
t,τ

nt,τ∑
j=2

e−(2+c)mj E
[∣∣ζt(τ,mj)

∣∣2+c | FX
]∣∣I(t,τ)j (h)

∣∣2+c
(∆t,τ (j))

2+c

≤ O(1)∆
c/2
t,τ

nt,τ∑
j=2

e−(2+c)mj σ2+c
t (τ,mj)E

[
|κt(τ,mj)|2+c | FX

]∣∣I(t,τ)j (h)
∣∣2+c

∆t,τ (j)

≤ OP(1)∆
c/2
t,τ

nt,τ∑
j=2

e−(2+c)mj σ̃2+c
t (τ,mj)O

2+c
t (τ,mj)∆t,τ (j)

≤ OP(1)∆
c/2
t,τ

nt,τ∑
j=2

e−(2+c)mj · e(2+c)(−qmj∧(1+q)mj)∆t,τ (j)

≤ OP(1)∆
c/2
t,τ = oP(1).

Concretely, the first inequality follows from Assumption 2(iii) and the measurement error

specifications in Assumption 3; the second inequality follows using the uniform bounded-

ness of |I(t,τ)j (h)| and Assumption 3(ii); the third inequality follows from Assumption 3(iii)

as well as Lemma 1 of BLV in combination with Assumption 1(ii); the last inequality

results because the sum converges to a finite integral under the employed asymptotic

scheme. As a consequence, we have the F̃ (t,τ)-stable CLT

∆
−1/2
t,τ ⟨ζ(1)t (·, τ), h⟩ F̃(t,τ)-s−−−−−→ N

(
0,Σ(t,τ)(h),Γ(t,τ)(h)

)
.

Since FX ⊂ F̃ (t,τ), this implies the FX-stable CLT (B.7) for any h ∈ L2
1(π).

Given the derived rates for the errors in the CCF approximation in Lemma B.1, we

note that with (α∧α) > 1/(2(q ∧ (1+ q))), the observation errors ∆
−1/2
t,τ ⟨ζ(1)t (·, τ), h⟩ will

determine the asymptotic distribution, while ∆
−1/2
t,τ ⟨ζ(2)t (·, τ) + ζ

(3)
t (·, τ), h⟩ = oP(1).

23 In

fact, we have for each h ∈ L2
1(π) that

∆
−1/2
t,τ ⟨pφt(·, τ)− φt(·, τ), h⟩ = ∆

−1/2
t,τ ⟨ζ(1)t (·, τ), h⟩+ oP(1)

FX -s−−−→ N
(
0,Σ(t,τ)(h),Γ(t,τ)(h)

)
,

as claimed.

Lemma B.3. Suppose Assumptions 1–4 hold with (α ∧ α) > 1/(2(q ∧ (1 + q))). Then,

we have

∆−1/2


⟨pφ1 −φ1,h1⟩

...

⟨pφT −φT ,hT ⟩

 FX -s−−−→ N
(
0,ΣT (h),ΓT (h)

)
(B.8)

23The truncation and discretization errors are FX -measurable and might introduce a finite-sample

bias, but, as nt,τ → ∞, the CCF approximation is asymptotically unbiased.
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for all h := (h1; . . . ;hT ) with ht := (h1,t, . . . , hp,t)
T ∈ L2

p(π), where the FX-measurable

covariance and relation matrices are given by

ΣT (h) :=


ϱ1Σ

(1)(h1) · · · 0
...

. . .
...

0 · · · ϱT Σ(T )(hT )

 , (B.9)

ΓT (h) :=


ϱ1 Γ

(1)(h1) · · · 0
...

. . .
...

0 · · · ϱT Γ(T )(hT )

 , (B.10)

respectively, using

Σ(t)(ht) := ⟨ht, K
(t)ht⟩ :=

p∑
i=1

ϱt,τi ⟨hi,t, K(t,τi)hi,t⟩, (B.11)

Γ(t)(ht) := ⟨ht, S
(t)ht⟩ :=

p∑
i=1

ϱt,τi ⟨hi,t, S(t,τi)hi,t⟩. (B.12)

Here, K(t,τ) and S(t,τ) are integral operators with kernels given by equations (B.5) and (B.6).

Proof. By Lemma B.2, for each fixed t and τ , we have the stable CLT (B.4). Due to the

characterization of FX-stable convergence, it holds that

E
[
Y E

[
g(∆

−1/2
t,τ ⟨pφt(·, τ)− φt(·, τ), h⟩) | FX

]]
→ E[Y E[g(Z(t,τ)(h)) | FX ]] (B.13)

for every bounded FX-measurable Y ∈ L∞(FX) and every bounded and continuous

function g ∈ Cb(C), where Z(t,τ)(h) is an FX-independent random variable that realizes

the complex Gaussian distribution N
(
0,Σ(t,τ)(h),Γ(t,τ)(h)

)
. Equation (B.13) implies that

E
[
g(∆

−1/2
t,τ ⟨pφt(·, τ)− φt(·, τ), h⟩) | FX

] P−→ E
[
g(Z(t,τ)(h)) | FX

]
for all g ∈ Cb(C). Likewise, using Assumption 2(iv), we obtain that

E
[
g(∆

−1/2
t ⟨pφt(·, τ)− φt(·, τ), h⟩) | FX

] P−→ E
[
g(ϱ

1/2
t,τ Z

(t,τ)(h)) | FX
]
. (B.14)

Fix any t ∈ T. We will next show that

∆
−1/2
t ⟨pφt −φt,ht⟩

FX -s−−−→ N
(
0,Σ(t)(ht),Γ

(t)(ht)
)

(B.15)

for any ht = (h(t,τ1), . . . , h(t,τp))T ∈ L2
p(π), where the covariance and relation, Σ(t)(ht) :=

⟨ht, K
(t)ht⟩ and Γ(t)(ht) := ⟨ht, S

(t)ht⟩, are defined in equations (B.11) and (B.12), re-

spectively.

To establish the stable CLT (B.15), exploiting the FX-conditional independence of

measurement errors due to Assumption 3, observe that equation (B.14) and the Bounded
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Convergence Theorem24 yield

E

[
Y
∏
τ∈Tt

gτ (∆
−1/2
t ⟨pφt(·, τ)− φt(·, τ), h(t,τ)⟩)

]

= E

[
Y
∏
τ∈Tt

E
[
gτ (∆

−1/2
t ⟨pφt(·, τ)− φt(·, τ), h(t,τ)⟩) | FX

]]

→ E

[
Y
∏
τ∈Tt

E
[
gτ (ϱ

1/2
t,τ Z

(t,τ)(h(t,τ))) | FX
]]

= E

[
Y
∏
τ∈Tt

gτ (ϱ
1/2
t,τ Z

(t,τ)(h(t,τ)))

]

for every Y ∈ L∞(FX) and gτ ∈ Cb(C), where Z(t,τ)(h) are random variables, independent

of FX and of each other, that realize the limiting distributions N
(
0,Σ(t,τ)(h),Γ(t,τ)(h)

)
for τ ∈ Tt, while we may set Z(t,τ)(h) = 0 for τ ̸∈ Tt. By a complex version of the

Stone-Weierstrass Theorem, linear combinations of decomposable functions of the form∏
τ∈Tt gτ uniformly approximate any C-valued continuous function on a compact domain.

Hence, using Zt(ht) :=
∑

τ∈Tt ϱ
1/2
t,τ Z

(t,τ)(h(t,τ)) and a similar argument as in the proof of

Proposition A.2, it follows in particular that

E
[
Y g(∆

−1/2
t ⟨pφt −φt,ht⟩)

]
→ E

[
Y g(Zt(ht))

]
for all Y ∈ L∞(FX) and g ∈ Cb(C). Since Zt(ht) realizes the limiting distribution

N
(
0,Σ(t)(ht),Γ

(t)(ht)
)
, the stable CLT (B.15) holds.

Finally, we establish the joint stable CLT (B.8), using an analogous argument as

above. Specifically, again exploiting the FX-conditional independence of measurement

errors, equation (B.14), the Bounded Convergence Theorem, and Assumption 2(iv) imply

that

E

[
Y
∏
t∈T

gt(∆
−1/2⟨pφt −φt,ht⟩)

]
= E

[
Y
∏
t∈T

E
[
gt(∆

−1/2⟨pφt −φt,ht⟩) | FX
]]

→ E

[
Y
∏
t∈T

E
[
gt(ϱ

1/2
t Zt(ht)) | FX

]]

= E

[
Y
∏
t∈T

gt(ϱ
1/2
t Zt(ht))

]

for every Y ∈ L∞(FX) and gt ∈ Cb(C), from which the CLT (B.8) eventually follows.

24Note that the Bounded Convergence Theorem in its usual form also holds under convergence in

probability, rather than almost surely, by the Vitali Convergence Theorem.
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B.2 Proof of Proposition 1

We start with the convergence in probability in L2
p(π) of the option-implied log CCF pψt

for fixed t ∈ T. By Lemma B.1, the option-implied CCF pφt(·, τ) converges uniformly on U
such that supu∈U |pφt(u, τ)−φt(u, τ)| = oP(1). Given continuity of the CCF and the absence

of zeros in U from Assumption 4(ii), Theorem 7.6.3 in Chung (2000) implies the uniform

convergence of the log CCFs pψt(·, τ) on U such that supu∈U | pψt(u, τ) − ψt(u, τ)| = oP(1).

The convergence in L2
1(π) immediately follows, as

∥ pψt(·, τ)− ψt(·, τ)∥ ≤ π(U)1/2 sup
u∈U

∣∣ pψt(u, τ)− ψt(u, τ)
∣∣ = oP(1).

The identity ∥pψt −ψt∥2 =
∑

τ∈Tt∥ pψt(·, τ)− ψt(·, τ)∥2 further implies ∥pψt −ψt∥ = oP(1),

which yields the convergence in L2
p(π).

To establish the FX-stable convergence in L2
p(π) for the option-implied log CCF pψt,

we first show FX-stable convergence for the option-implied CCF pφt, which we subse-

quently translate to the log CCF using the functional delta method. For the FX-stable

convergence of pφt for t ∈ T, it suffices by Proposition A.2 to show that (i) the sequence

∆
−1/2
t (pφt − φt) of random functions is tight and (ii) the marginals ∆

−1/2
t ⟨pφt − φt,h⟩

converge FX-stably to a (complex) Gaussian distribution for all h ∈ L2
p(π). For (i), we

specifically need that for every ε > 0, there exists an Mε > 0 such that

sup
nt

P
[
∆

−1/2
t ∥pφt −φt∥ > Mε

]
< ε. (B.16)

From Lemma B.1 and the bound on α ∧ α, we have that ∆
−1/2
t ∥pφt − φt∥ = OP(1).

Together with the fact that E[∥pφt −φt∥] <∞ for each nt, equation (B.16) holds, which

establishes tightness of the sequence. For (ii), Lemmas B.2 and B.3 yield the stable CLT

for the marginals given any h ∈ L2
p(π),

∆
−1/2
t ⟨pφt −φt,h⟩

FX -s−−−→ N
(
0,Σ(t)(h),Γ(t)(h)

)
,

with Σ(t)(h) = ⟨h, K(t)h⟩ and Γ(t)(h) = ⟨h, S(t)h⟩, where the covariance and relation

operators K(t) and S(t) in equations (B.11) and (B.12) are given in terms of the integral

operators K(t,τ) and S(t,τ) with kernels k(t,τ)(u1, u2) and s
(t,τ)(u1, u2) as in equations (B.5)

and (B.6), respectively. Therefore, by Proposition A.2, we obtain the functional stable

CLT

∆
−1/2
t

(
pφt −φt

) FX -s−−−→ N
(
0, K(t), S(t)

)
in L2

p(π),

independently across t ∈ T.
Given the uniform convergence results of the CCF and the log CCF on U , we can utilize

the functional delta method (cf. section 3.10 in van der Vaart and Wellner, 2023) to obtain

a functional stable CLT for pψt. Denote by C1 the space of C-valued continuous functions
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f with f(0) = 1 and f(u) ̸= 0 for all u ∈ U as well as by Cp its Cp-valued counterpart. The

distinguished log may be viewed as a mapping Log : C1 ⊂ L2
1(π) → L2

1(π). Its Hadamard

derivative at φ ∈ C1 in direction η such that φ + η ∈ C1 is given by Log′(η;φ) = η/φ.

Indeed, for any ηε with φ+ εηε ∈ C1 and ∥ηε − η∥ = o(1) as ε ↓ 0, it holds that∥∥∥∥Log(φ+ εηε)− Log(φ)

ε
− η

φ

∥∥∥∥
≤ π(U)1/2 sup

u∈U

∣∣∣∣Log(φ+ εηε)(u)− Log(φ)(u)

ε
− η(u)

φ(u)

∣∣∣∣ = o(1),

where the convergence of the supremum is established in Proposition 2 of Jongbloed and

van der Meulen (2006). Applying each operation componentwise, this result extends

analogously to L2
p(π). Theorem 3.10.17 in van der Vaart and Wellner (2023) then allows

to conclude that

∆
−1/2
t

(
pψt −ψt

) FX -s−−−→ N
(
0,K(t),S(t)

)
in L2

p(π), (B.17)

independently across t ∈ T. Here, for ht := (h1,t, . . . , hp,t)
T ∈ L2

p(π), the covariance and

relation operators, K(t) and S(t), are given by

⟨ht,K(t)ht⟩ :=
p∑

i=1

ϱt,τi ⟨hi,t,K(t,τi)hi,t⟩, (B.18)

⟨ht,S(t)ht⟩ :=
p∑

i=1

ϱt,τi ⟨hi,t,S(t,τi)hi,t⟩, (B.19)

in terms of the integral operators K(t,τ) and S(t,τ) with kernels

κ(t,τ)(u1, u2) =
k(t,τ)(u1, u2)

φt(−u1, τ)φt(u2, τ)
, (B.20)

ς(t,τ)(u1, u2) =
s(t,τ)(u1, u2)

φt(u1, τ)φt(u2, τ)
, (B.21)

respectively.

B.3 Proof of Proposition 2

Denote by pqT (θ) the objective function QT (θ, {pxt(θ)}t∈T) in problem (3.9), concentrating

out the optimal state estimators pxt(θ) as in equation (3.7). Likewise, define qT (θ) as an

analogous noise-free objective function, using the log CCFs ψt = ft(θ0) and the associated

optimal state estimators xt(θ) := ⟨βt(θ),βt(θ)⟩−1⟨ψt − αt(θ),βt(θ)⟩. Formally, we thus

define

pqT (θ) :=
∑
t∈T

wt ∥pψt − pft(θ)∥2 and qT (θ) :=
∑
t∈T

wt ∥ψt − ft(θ)∥2

with pft(θ) := αt(θ) + βt(θ)pxt(θ) and ft(θ) := αt(θ) + βt(θ)xt(θ).
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We start by verifying that pθ
P−→ θ0. As a first step, we want to show that |pqT (θ) −

qT (θ)| = oP(1) uniformly on Θ. To establish this, note the bound

|pqT (θ)− qT (θ)| ≤
∑
t∈T

wt

∣∣∣∥pψt − pft(θ)∥2 − ∥ψt − ft(θ)∥2
∣∣∣ . (B.22)

Each term on the right-hand side of equation (B.22) is in turn bounded by∣∣∣∥pψt − pft(θ)∥2 − ∥ψt − ft(θ)∥2
∣∣∣ ≤ 2∥ψt − ft(θ)∥ ∥ηt(θ)∥+ ∥ηt(θ)∥2

≤ 2
(
∥ft(θ0)∥+ ∥ft(θ)∥

)
∥ηt(θ)∥+ ∥ηt(θ)∥2,

(B.23)

where ηt(θ) :=
(
pψt−pft(θ)

)
−
(
ψt−ft(θ)

)
. Hence, the uniform convergence of pqT (θ) follows

via equations (B.22) and (B.23) if we can verify that ∥ft(θ)∥ = OP(1) and ∥ηt(θ)∥ = oP(1)

uniformly on Θ for each t ∈ T.
To show the uniform boundedness of ∥ft(θ)∥, we use that25

∥ft(θ)∥ ≤ ∥αt(θ)∥+ ∥βt(θ)xt(θ)∥

≤ ∥αt(θ)∥+ ∥⟨βt(θ),βt(θ)⟩∥1/2 ∥xt(θ)∥

≤ ∥αt(θ)∥+ tr(⟨βt(θ),βt(θ)⟩)1/2 ∥xt(θ)∥ = OP(1)

(B.24)

uniformly on Θ and

∥xt(θ)∥ ≤ ∥⟨βt(θ),βt(θ)⟩−1∥ ∥⟨ψt −αt(θ),βt(θ)⟩∥

≤ ∥⟨βt(θ),βt(θ)⟩−1∥ tr(⟨βt(θ),βt(θ)⟩)1/2 ∥ψt −αt(θ)∥

≤ ∥⟨βt(θ),βt(θ)⟩−1∥ tr(⟨βt(θ),βt(θ)⟩)1/2
(
∥ψt∥+ ∥αt(θ)∥

)
= OP(1)

(B.25)

uniformly on Θ. In fact, the continuity of αt(θ) and βt(θ) implied by Assumption 6 on

the compact parameter space Θ yields that αt(θ) and βt(θ) are uniformly bounded on

Θ, i.e., ∥αt(θ)∥ = OP(1) and tr(⟨βt(θ),βt(θ)⟩) = OP(1) uniformly on Θ. Furthermore,

we have ∥ψt∥ = OP(1) since E[∥ψt∥] < ∞. Ultimately, the uniform boundedness in

equations (B.24) and (B.25) hinges on the behavior of the matrix inverse ⟨βt(θ),βt(θ)⟩−1

over Θ, for which Assumption 7 yields

∥⟨βt(θ),βt(θ)⟩−1∥ = σmax(⟨βt(θ),βt(θ)⟩−1) = σmin(⟨βt(θ),βt(θ)⟩)−1 = O(1)

uniformly on Θ, where σmax(M) and σmin(M) denote the largest and smallest singular

value, respectively, of the d× d matrix M .

25Consider a matrix-valued function G with elements in L2
1(π) and a complex-valued vector v. Since

⟨G,G⟩ is a positive semi-definite matrix, it has singular value decomposition ⟨G,G⟩ = UΩUH. Setting

C = Ω1/2UH, we have that ∥Gv∥ = ∥Cv∥ and ∥C∥ = ∥⟨G,G⟩∥1/2. Therefore, ∥Gv∥ ≤ ∥C∥∥v∥ =

∥⟨G,G⟩∥1/2∥v∥. In addition, from a componentwise application of the Cauchy-Schwarz inequality under

the Frobenius norm, we obtain ∥⟨G,G⟩∥ ≤ ∥⟨G,G⟩∥F ≤ tr(⟨G,G⟩).
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To show the uniform convergence of ∥ηt(θ)∥ = oP(1), we use that

∥ηt(θ)∥ ≤ ∥pψt −ψt∥+ ∥pft(θ)− ft(θ)∥ = oP(1) (B.26)

uniformly on Θ. As a consequence of the consistency of pψt(·, τ) in L2
1(π) for each fixed

t and τ established in Proposition 1, ∥pψt − ψt∥ = ∥ξt∥ = oP(1) holds independently

of θ. The uniform convergence in equation (B.26) is thus justified as long as ∥pft(θ) −
ft(θ)∥ = oP(1) uniformly on Θ. By a similar argument as for the uniform bounds in

equations (B.24) and (B.25), we indeed obtain that

∥pft(θ)− ft(θ)∥ = ∥βt(θ)(pxt(θ)− xt(θ))∥

≤ tr(⟨βt(θ),βt(θ)⟩)1/2 ∥pxt(θ)− xt(θ)∥ = oP(1)
(B.27)

uniformly on Θ as well as

∥pxt(θ)− xt(θ)∥ ≤ ∥⟨βt(θ),βt(θ)⟩−1∥ ∥⟨ξt,βt(θ)⟩∥

≤ ∥⟨βt(θ),βt(θ)⟩−1∥ tr(⟨βt(θ),βt(θ)⟩)1/2 ∥ξt∥ = oP(1)
(B.28)

uniformly on Θ.

Denote the infimum in Assumption 8 by ℓ(ε) > 0. Exploiting the uniform convergence

of pqT (θ) shown above, we may for each δ > 0 choose some Nδ large enough such that

P[|pqT (θ) − qT (θ)| ≥ ℓ(ε)/2] < δ for all n ≥ Nδ and θ ∈ Θ. Restrict the attention to the

events where |pqT (θ) − qT (θ)| < ℓ(ε)/2 for all θ ∈ Θ. By Assumption 8, for any ε > 0,

∥θ − θ0∥ > ε implies a.s. that qT (θ) ≥ ℓ(ε) and further

pqT (θ) > qT (θ)−
ℓ(ε)

2
≥ ℓ(ε)

2
.

However, due to the optimality of pθ for pqT (θ) and the identity qT (θ0) = 0, observe that

pqT (pθ) ≤ pqT (θ0) < qT (θ0) +
ℓ(ε)

2
=
ℓ(ε)

2
.

Hence, we must have ∥pθ − θ0∥ ≤ ε a.s. whenever |pqT (θ) − qT (θ)| < ℓ(ε)/2. As a conse-

quence, it follows that P[∥pθ−θ0∥ > ε] < δ for each n ≥ Nδ, which establishes the claimed

convergence ∥pθ − θ0∥ = oP(1).

In order to show that also pxt(pθ)
P−→ xt = xt(θ0) for each t ∈ T, we start from

∥pxt(pθ)− xt(θ0)∥ ≤ ∥pxt(pθ)− xt(pθ)∥+ ∥xt(pθ)− xt(θ0)∥. (B.29)

For the first term on the right-hand side of equation (B.29), the uniform convergence

of ∥pxt(θ) − xt(θ)∥ obtained from equation (B.28) implies that ∥pxt(pθ) − xt(pθ)∥ = oP(1).

Regarding the second term, it suffices to verify that xt(θ) is continuous at θ = θ0, as then

∥xt(pθ) − xt(θ0)∥ = oP(1) is implied by ∥pθ − θ∥ = oP(1). From the definition xt(θ), the
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continuity of xt(θ) follows immediately from the continuity of the elementary vector and

matrix operations26 together with the fact that ∥θ − θ̃∥ = o(1) implies

∥⟨ψt −αt(θ),βt(θ)⟩ − ⟨ψt −αt(θ̃),βt(θ̃)⟩∥

≤ ∥⟨ψt,βt(θ)− βt(θ̃)⟩∥+ ∥⟨αt(θ),βt(θ)⟩ − ⟨αt(θ̃),βt(θ̃)⟩∥

≤ tr(⟨βt(θ)− βt(θ̃),βt(θ)− βt(θ̃)⟩)1/2 ∥ψt∥+ o(1) = oP(1),

using again that ∥ψt∥ = OP(1). In combination, equation (B.29) thus yields the desired

convergence ∥pxt(pθ)− xt(θ0)∥ = oP(1).

B.4 Proof of Proposition 3

Define Ft(θ, z) := αt(θ) +βt(θ)z. Given differentiability of αt(θ) and βt(θ) with respect

to θ by Assumption 6 and the consistency results from Proposition 2, the estimates pθ and

pxt := pxt(pθ) with t ∈ T jointly solve
〈
pψt − Ft(pθ, pxt),βt(pθ)

〉
= 0, for t ∈ T,∑

t∈T

wt

〈
pψt − Ft(pθ, pxt),∇θFt(pθ, pxt)

〉
= 0,

where ∇θFt(pθ, pxt) ∈ Cp×dθ denotes the gradient of Ft with respect to θ, elements of which

are functions in L2
1(π). A first-order exact Taylor expansion yields

0 = ⟨pψt − Ft(θ0,xt),βt(θ0)⟩ − ⟨βt(qθ),βt(qθ)⟩
(
pxt − xt

)
+
(
−⟨∇θFt(qθ, qxt),βt(qθ)⟩+ ⟨pψt − Ft(qθ, qxt),∇θβt(qθ)⟩

) (
pθ − θ0

) (B.30)

for t ∈ T, and

0 =
∑
t∈T

wt

{
⟨pψt − Ft(θ0,xt),∇θFt(θ0,xt)⟩

+
(
−⟨βt(qθ),∇θFt(qθ, qxt)⟩+ ⟨pψt − Ft(qθ, qxt),∇x∇θFt(qθ, qxt)⟩

) (
pxt − xt

)
+
(
−⟨∇θFt(qθ, qxt),∇θFt(qθ, qxt)⟩+ ⟨pψt − Ft(qθ, qxt),∇2

θFt(qθ, qxt)⟩
) (
pθ − θ0

)}
,

(B.31)

26For vector-valued functions g, g̃ and matrix-valued functions G and G̃ with elements in L2
1(π), the

inner product (g,G) 7→ ⟨g,G⟩ is continuous as ∥g − g̃∥ = o(1) and tr(⟨G− G̃,G− G̃⟩) = o(1) imply

∥⟨g,G⟩ − ⟨g̃, G̃⟩∥ ≤ tr(⟨G,G⟩)1/2 ∥g − g̃∥+ tr(⟨G− G̃,G− G̃⟩)1/2 ∥g̃∥ = o(1).

For matrix-valued functions G and G̃ with elements in L2
1(π), the inner product G 7→ ⟨G,G⟩ is

continuous as tr(⟨G− G̃,G− G̃⟩) = o(1) implies

∥⟨G,G⟩ − ⟨G̃, G̃⟩∥ ≤
(
tr(⟨G,G⟩)1/2 + tr(⟨G̃, G̃⟩)1/2

)
tr(⟨G− G̃,G− G̃⟩)1/2 = o(1),

using that ∥⟨G, G̃⟩∥ ≤ ∥⟨G, G̃⟩∥F ≤ tr(⟨G,G⟩)1/2tr(⟨G̃, G̃⟩)1/2 due to the Cauchy-Schwarz inequality.
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where qθ is lying between pθ and θ0, and qxt is between pxt and xt for each t, respectively.

Due to the continuity in θ of αt(θ) and βt(θ) implied by Assumption 6, note that Ft(θ, z)

is also continuous, since ∥θ − θ̃∥ = o(1) and ∥z− z̃∥ = o(1) implies that

∥Ft(θ, z)− Ft(θ̃, z̃)∥ ≤ o(1) + tr(⟨βt(θ),βt(θ)⟩)1/2 ∥z− z̃∥ = o(1). (B.32)

Consider any H ⊂ L2
p(π) such that ∥h∥ = OP(1) uniformly across all h ∈ H. Given

the consistency of pθ and pxt obtained in Proposition 2, we thus have for all h ∈ H that

⟨pψt − Ft(qθ, qxt),h⟩ = oP(1) uniformly on H because

|⟨pψt − Ft(qθ, qxt),h⟩| ≤ |⟨ξt,h⟩|+ |⟨ψt − Ft(qθ, qxt),h⟩|

≤
(
∥ξt∥+ ∥Ft(θ0,xt)− Ft(qθ, qxt)∥1/2

)
∥h∥ = oP(1),

where ∥ξt∥ = oP(1) follows from Proposition 1 and ∥Ft(θ0,xt)− Ft(qθ, qxt)∥ = oP(1) from

the continuity of Ft(θ, z) as ∥qθ−θ0∥ ≤ ∥pθ−θ0∥ = oP(1) and ∥qxt−θ0∥ ≤ ∥pxt−θ0∥ = oP(1).

Extended to matrices, the result holds in particular when choosing h equal to ∇θβt(qθ)

in equation (B.30) as well as ∇x∇θFt(qθ, qxt) = ∇θβt(qθ) and ∇2
θFt(qθ, qxt) = ∇2

θαt(qθ) +

∇2
θβt(qθ)qxt in equation (B.31), due to the uniform boundedness imposed by Assumption 6.

In matrix form, we can therefore write equations (B.30) and (B.31) as

(
qAT + oP(1)

)

px1 − x1

...

pxT − xT

pθ − θ0

 =


⟨ξ1,β1(θ0)⟩

...

⟨ξT ,βT (θ0)⟩∑
t∈Twt⟨ξt,∇θFt(θ0,xt)⟩

 . (B.33)

Given the continuity in θ of αt(θ) and βt(θ) and its derivatives in Assumption 6 as well as

the continuity of the relevant matrix operations,27 the consistency result of Proposition 2

yields qAT
P−→ AT for the FX-measurable matrix

AT :=


⟨β1,β1⟩ · · · 0 ⟨∇θF1,β1⟩

...
. . .

...
...

0 · · · ⟨βT ,βT ⟩ ⟨∇θFT ,βT ⟩
w1⟨β1,∇θF1⟩ · · · wT ⟨βT ,∇θFT ⟩

∑
t∈Twt⟨∇θFt,∇θFt⟩

 , (B.34)

where on the right-hand side the dependence of functions on the true parameter vector

θ0 and the true state vectors xt is suppressed. The matrix qAT is defined similarly, but

with the functions depending on qθ and qxt.

27The continuity of ∇θFt(θ, z) can be established analogously to equation (B.32). Moreover, the

continuity of inner products is partially addressed in the proof of Proposition 2. Extending these results,

note that for matrix-valued functionsG, G̃ andH, H̃ with elements in L2
1(π), the inner product (G,H) 7→

⟨G,H⟩ is continuous as tr(⟨G− G̃,G− G̃⟩) = o(1) and tr(⟨H− H̃,H− H̃⟩) = o(1) imply

∥⟨G,H⟩−⟨G̃, H̃⟩∥ ≤ tr(⟨G,G⟩)1/2 tr(⟨H−H̃,H−H̃⟩)1/2+tr(⟨H̃, H̃⟩)1/2 tr(⟨G−G̃,G−G̃⟩)1/2 = o(1).
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Given the stable CLT in Proposition 1, the scaled vector on the right-hand side of

equation (B.33) converges FX-stably to a complex Gaussian distribution. In fact, due

to the Hermitian properties of the involved functions, the imaginary part of the limiting

distribution is zero, so that the limit is a real Gaussian distribution. Concretely, by

equation (B.17), we thus have that

∆−1/2


⟨ξ1,β1(θ0)⟩

...

⟨ξT ,βT (θ0)⟩∑
t∈Twt⟨ξt,∇θFt(θ0,xt)⟩

 FX -s−−−→ N (0, BT )

with covariance matrix

BT :=


⟨β1, K̃(1)β1⟩ · · · 0 w1⟨∇θF1, K̃(1)β1⟩

...
. . .

...
...

0 · · · ⟨βT , K̃(T )βT ⟩ wT ⟨∇θFT , K̃(T )βT ⟩
w1⟨β1, K̃(1)∇θF1⟩ · · · wT ⟨βT , K̃(T )∇θFT ⟩

∑
t∈Tw

2
t ⟨∇θFt, K̃(t)∇θFt⟩

 , (B.35)

where on the right-hand side the dependence of functions on the true parameter vector

θ0 and the true state vectors xt is suppressed. Here, for gt := (g1,t, . . . , gp,t)
T, ht :=

(h1,t, . . . , hp,t)
T ∈ L2

p(π), the covariance operators K̃(t) are defined as

⟨gt, K̃(t)ht⟩ := ϱt

p∑
i=1

ϱt,τi ⟨gi,t,K(t,τi)hi,t⟩. (B.36)

In conclusion, invoking the generalized Slutsky Theorem for stable convergence (e.g.,

Lemma 1.15.6 in van der Vaart and Wellner, 2023), we obtain the stable CLT (3.10),

noting that AT and BT are real-valued FX-measurable matrices.

B.5 Proof of Proposition 4

We construct feasible versions pAT and pBT of AT and BT in equations (B.34) and (B.35)

in Section B.4 as follows. Concretely, for pAT and pBT , we set

pAT :=


⟨β1,β1⟩ · · · 0 ⟨∇θF1,β1⟩

...
. . .

...
...

0 · · · ⟨βT ,βT ⟩ ⟨∇θFT ,βT ⟩
w1⟨β1,∇θF1⟩ · · · wT ⟨βT ,∇θFT ⟩

∑
t∈Twt⟨∇θFt,∇θFt⟩

 , (B.37)

pBT :=


⟨β1, pK(1)β1⟩ · · · 0 w1⟨∇θF1, pK(1)β1⟩

...
. . .

...
...

0 · · · ⟨βT , pK(T )βT ⟩ wT ⟨∇θFT , pK(T )βT ⟩
w1⟨β1, pK(1)∇θF1⟩ · · · wT ⟨βT , pK(T )∇θFT ⟩

∑
t∈Tw

2
t ⟨∇θFt, pK(t)∇θFt⟩

 , (B.38)
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where on the right-hand sides the dependence of functions on the estimated parameter

vector pθ and the estimated state vectors pxt is suppressed. Analogous to the definition

of K̃(t) in equation (B.36), for gt := (g1,t, . . . , gp,t)
T, ht := (h1,t, . . . , hp,t)

T ∈ L2
p(π), we

define pK(t) as

⟨gt, pK(t)ht⟩ :=
p∑

i=1

∆t,τ

∆
⟨gi,t, pK(t,τi)hi,t⟩. (B.39)

Employing equations (B.5) and (B.20), each pK(t,τi) is an integral operator with kernel

given by

pκ(t,τ)(u1, u2) :=
ut,τ (u1) ut,τ (u2)

pφt(−u1, τ) pφt(u2, τ)

nt,τ∑
j=2

e
(i

u2−u1√
τκt,τ

−2)mj
pζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

. (B.40)

Using the model-implied option prices O(τ,m; θ, z) associated to parameter vector θ and

state vector z ∈ Rd, pζt(τ,mj) are feasible estimates of option errors, constructed as

pζt(τ,m) := O(τ,m; pθ, pxt)− pOt(τ,m) = −ζt(τ,m) +O(τ,m; pθ, pxt)−O(τ,m; θ0,xt),

where the true option prices satisfy Ot(τ,m) = O(τ,m; θ0,xt).

As in the proof of Proposition 3, we may conclude that pAT
P−→ AT due to the consis-

tency of pθ and pxt in Proposition 2. In what follows, we will show that also pBT
P−→ BT .

Given the convergence of both pAT and pBT to FX-measurable limiting matrices, the stable

CLT (3.10) combined with the generalized Slutsky Theorem for stable convergence (e.g.,

Lemma 1.15.6 in van der Vaart and Wellner, 2023) yields the feasible stable CLT (3.11).

It now remains to verify that also pBT
P−→ BT . Since by equation (B.39) any non-zero

element of pBT is a finite sum of ⟨h, pK(t,τ)h⟩ for some h ∈ L2
1(π), it suffices to establish

that ⟨h, pK(t,τ)h⟩ P−→ ⟨h,K(t,τ)h⟩ for any such h, given fixed t and τ . Each term may be

written as

⟨h, pK(t,τ)h⟩ =
nt,τ∑
j=2

e−2mj pJ
(t,τ)
j (h) pζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

when defining

pJ
(t,τ)
j (h) :=

∫∫
ut,τ (u1) ut,τ (u2)

pφt(−u1, τ)pφt(u2, τ)
e
i
u2−u1√
τκt,τ

mj
h(u1)h(u2)π(du1)π(du2).

Due to the absence of zeros in pφt(·, τ) by Assumption 4(ii) and continuity, pφt(·, τ) is uni-
formly bounded away from zero on U . Hence, by the uniform boundedness and applying

the Cauchy-Schwarz inequality twice, we have

pJ
(t,τ)
j (h)

P−→ J
(t,τ)
j (h) :=

∫∫
ut,τ (u1) ut,τ (u2)

φt(−u1, τ)φt(u2, τ)
e
i
u2−u1√
τκt,τ

mj
h(u1)h(u2) π(du1)π(du2).
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In fact, the convergence is uniform in the sense that maxj
∣∣ pJ (t,τ)

j (h)−J (t,τ)
j (h)

∣∣ P−→ 0, with

|J (t,τ)
j (h)| ≤M∥h∥2 <∞ uniformly bounded for some M > 0, using Assumption 4(i).

We proceed in several steps to verify that ⟨h, pK(t,τ)h⟩ P−→ ⟨h,K(t,τ)h⟩. First, using the

(infeasible) true option errors ζt(τ,m), we want to show that for any h ∈ L2
1(π), we have

nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h) ζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

−
nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h)σ2

t (τ,mj)
(∆t,τ (j))

2

∆t,τ

P−→ 0.

(B.41)

Define χt(τ,mj) := ζ2t (τ,mj) − σ2
t (τ,mj). Due to Assumption 3, χt(τ,mj) are FX-

conditionally independent, E[χt(τ,mj) | FX ] = 0, and

E
[
χ2
t (τ,mj) | FX

]
= E[ζ4t (τ,mj) | FX ]− σ4

t (τ,mj)

= O4
t (τ,mj) σ̃

4
t (τ,mj)

(
E[κ4

t (τ,mj) | FX ]− 1
)
<∞.

Therefore,

E

∣∣∣∣∣
nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h)χt(τ,mj)

(∆t,τ (j))
2

∆t,τ

∣∣∣∣∣
2

| FX


≤ OP(1)

nt,τ∑
j=2

e−4mj E
[
χ2
t (τ,mj) | FX

](∆t,τ (j))
4

∆2
t,τ

≤ OP(1)∆t,τ

nt,τ∑
j=2

e−4mj · e4(−qmj∧(1+q)mj)∆t,τ (j)

≤ OP(1)∆t,τ = oP(1),

where the second inequality specifically employs Assumption 3(ii), Assumption 2(iii) as

well as Assumption 1(ii) with Lemma 1 of BLV; the final inequality follows since the sum

converges to a finite integral. Hence, the convergence in equation (B.41) holds.

Next, using the (feasible) option errors pζ2t (τ,m), we want to show that

nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h) pζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

−
nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h) ζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

P−→ 0.

(B.42)

Define pχt(τ,mj) := pζ
2
t (τ,mj) − ζ2t (τ,mj) and ζ̃t(τ,m) := O(τ,m; pθ, pxt) − O(τ,m; θ0,xt).

With these definitions, note that pχt(τ,m) = ζ̃2t (τ,m) − 2ζt(τ,m) ζ̃t(τ,m). To establish

the convergence in equation (B.42), we thus analyze the two terms separately. In each

case, while the original sequence is along N, we use that due to the consistency result in

Proposition 2 and Lemma 3.2 in Kallenberg (1997), there exists a subsequence N ′ ⊂ N
along which pθ and pxt converge almost surely.
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For the first term, we thereby obtain∣∣∣∣∣
nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h) ζ̃2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

∣∣∣∣∣ ≤ O(1)

nt,τ∑
j=2

e−2mj ζ̃2t (τ,mj)∆t,τ (j)

→ O(1)

∫
e−2m ζ̃2t (τ,m) dm

→ 0

almost surely along N ′. Specifically, the inequality follows by the uniform boundedness of

J
(t,τ)
j (h). Moreover, the sum converges to an integral, which converges to zero as n→ ∞

in N ′ by a (pathwise) application of the Dominated Convergence Theorem, using that

ζ̃2t (τ,m) → 0 for allm by the continuity in Assumption 9(i). Under Assumption 9(ii), em-

ploying the bound ζ̃2t (τ,m) ≤ O2(τ,m; pθ, pxt) +O2(τ,m; θ0,xt), the required integrability

condition is satisfied since∫
e−2m ζ̃2t (τ,m) dm ≤

∫
e−2m

(
O2(τ,m; pθ, pxt) +O2(τ,m; θ0,xt)

)
dm

≤ O(1)

∫
e−2m · e2(−qm∧(1+q)m) dm <∞

for large enough n, where the second inequality uses Lemma 1 in BLV.

For the second term, we obtain that∣∣∣∣∣
nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h) ζt(τ,mj) ζ̃t(τ,mj)

(∆t,τ (j))
2

∆t,τ

∣∣∣∣∣
≤ O(1)

nt,τ∑
j=2

e−2mj
∣∣ζt(τ,mj) ζ̃t(τ,mj)

∣∣∆t,τ (j)

≤ O(1)

(
nt,τ∑
j=2

e−2mj ζ2t (τ,mj)∆t,τ (j)

)1/2 (nt,τ∑
j=2

e−2mj ζ̃2t (τ,mj)∆t,τ (j)

)1/2

almost surely over N ′, where the first inequality uses the uniform boundedness of J
(t,τ)
j (h)

and the second one is a Cauchy-Schwarz inequality. Analogous to the proof of Lemma B.1,

we may show that the sum of ζ2t (τ,mj) is OP(1). Moreover, as before, the sum of ζ̃2t (τ,mj)

converges to zero almost surely. Hence, we may take another subsequence N ′′ ⊂ N ′ along

which the sum of ζ2t (τ,mj) is O(1) and, thereby, the entire second term converges to zero

almost surely.

In conclusion, the convergence in equation (B.42) holds almost surely along the subse-

quence N ′′ ⊂ N. Since the construction carries over to any arbitrary starting subsequence

N ⊂ N without modification, Lemma 3.2 in Kallenberg (1997) yields that convergence in

probability along the original sequence N holds in equation (B.42), as claimed.
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Finally, the uniform convergence of pJ
(t,τ)
j (h) yields also

nt,τ∑
j=2

e−2mj pJ
(t,τ)
j (h) pζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

−
nt,τ∑
j=2

e−2mjJ
(t,τ)
j (h) ζ2t (τ,mj)

(∆t,τ (j))
2

∆t,τ

P−→ 0.

(B.43)

Therefore, given any t and τ , it holds that ⟨h, pK(t,τ)h⟩ P−→ ⟨h,K(t,τ)h⟩ for all h ∈ L2
1(π),

which implies pBT
P−→ BT and thus concludes the proof.

C Numerical Implementation

For the numerical implementation of our methodology, we specify L2
p(π) with the choice

π(du) = ϕ(u; s) du, using the centered normal density ϕ(u; s) := 1√
2πs

exp(−1
2
u2

s2
) with

a given volatility parameter s > 0. The density function ϕ in this context acts as a

weight function that determines the importance of each CCF argument u in the resulting

integral. In our application, where the integration typically involves estimated CCFs or

related quantities, we specifically aim at downweighting larger u with lower signal-to-noise

ratio. While we choose a Gaussian PDF, other (symmetric) density functions could also

be utilized. However, our choice of the PDF is common in the related C-GMM literature

(e.g., Carrasco and Kotchoni, 2017) and allows us to conveniently approximate integrals

using Gauss-Hermite quadrature.

Formally, for any functions f, g ∈ L2
1(ϕ) and U = [−U,U ] with large enough U , we

use the Gauss-Hermite quadrature to approximate any inner product:

⟨f, g⟩ =
∫
U
f(u) g(u)ϕ(u; s) du ≈

∫
R
f(su) g(su)ϕ(u; 1) du ≈

N∑
i=1

wi f(sũi) g(sũi),

where N is the number of sampling points, and ũi and wi are the quadrature points and

weights, respectively, determined from the Gauss-Hermite quadrature rule. The second

approximation is exact if the integrand is a polynomial of order N − 1.

Whenever the considered functions f and g are both Hermitian, the number of eval-

uation points can be halved by considering only the positive real line:

⟨f, g⟩ = 2Re

∫
[0,U ]

f(u) g(u)ϕ(u; s) du ≈ 2Re
N∑
i=1

wi 1{ũi≥0} f(sũi) g(sũi).

Since the log CCFs and affine coefficients are continuously-differentiable functions in

the argument u, in our application, the approximation by the Gauss-Hermite is accurate

and robust even for a small number of quadrature points N , as illustrated in Section 4.

D Extensions

This section discusses various extensions of our methodology in Section 3.
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D.1 Constrained state estimation

The main exposition of our estimation approach in Section 3.2 uses an (asymptotically

inconsequential) relaxation from the state space D to Rd in order to obtain the closed-

form state estimator in equation (3.7). In most practically relevant cases, in which D is

characterized by simple non-negativity constraints (e.g., to ensure well-defined variances

or jump intensities), this relaxation is not necessary, as we will show in this section.

For concreteness, suppose that D has the following form:

D :=
{
z := (z1, . . . , zd)

T ∈ Rd : zi ≥ 0 for all i ∈ I
}
, (D.1)

where the set I ⊂ {1, . . . , d} contains the indices of all non-negativity constrained state

variables. Denote the associated power set (i.e., collection of all subsets) by Ĩ := 2I .

With the definition (D.1) for D, the least-squares state estimator in equation (3.5) can

be directly implemented using a two-stage procedure. In the first stage, for each index

set ι ∈ Ĩ, an auxiliary state estimator px
(ι)
t (θ) is determined subject to the constraint that

all components of the state vector with indices in ι are zero:

px
(ι)
t (θ) := argmin

zt∈Rd

(zt)ι=0

∥pψt −αt(θ)− βt(θ)zt∥2. (D.2)

The resulting px
(ι)
t (θ) may or may not be in D. Problem (D.2) effectively corresponds to

dimensionality reduction performed on the state space. In the second stage, the final state

estimator pxt(θ) = x̃t(θ) as in equation (3.5) is found by optimizing over all admissible

first-stage estimators px
(ι)
t (θ) that are contained in D:

pxt(θ) := argmin
px
(ι)
t ∈D
ι∈Ĩ

∥pψt −αt(θ)− βt(θ)px
(ι)
t ∥2. (D.3)

The estimator is well-defined, as in any case px
(I)
t ∈ D, and we indeed have that pxt(θ) ∈

D. It is straightforward to implement the preceding two-stage estimation approach for

moderate dimensionalities |I|.
Our theoretical results in Section 3.2 continue to hold when employing the constrained

state estimator in equation (D.3) instead of the unconstrained one in equation (3.7). The

only required modification is a slight strengthening of Assumption 5(ii), where we now

need to ensure that the true state vectors are contained in the interior of the state space,

i.e., xt ∈ int(D) at each t ∈ T.

D.2 Discrete CCF arguments

Our general functional formulation nests the special case with a discrete set of CCF ar-

guments, such as in BLV and Freire and Vladimirov (2023). This case can be mapped

50



to a complex-valued vector representation, which we discuss in this section. Given this

representation, it is also straightforward to derive the associated real-valued vector rep-

resentation that stacks the real and imaginary parts separately.

To obtain the desired complex-valued vector representation, consider a discrete set of

arguments Ũ := {u1, . . . , um} ⊂ U , which without loss of generality is chosen symmetric

about zero. For the given Ũ , take the discrete measure

π =
m∑
j=1

δ{uj}, (D.4)

where δ{uj} denotes the Dirac measure with point mass located at uj. By construction

and the symmetry of Ũ , π is likewise symmetric about the origin, as required.

We now represent log CCFs on each date t in the following stacked vector form as

elements of Cpm:

Ψt :=


Ψ1,t

...

Ψp,t

 , Ψi,t :=


ψt(u1, τi)

...

ψt(um, τi)

 ,

and analogously for pΨt.

The following result states the associated vector version of Proposition 1.

Proposition D.1. Suppose Assumptions 1–4 hold. Then, for each t ∈ T, we have

pΨt
P−→ Ψt. (D.5)

If, in addition, (α ∧ α) > 1/(2(q ∧ (1 + q))), we have, independently across t ∈ T,

∆
−1/2
t

(
pΨt −Ψt

) FX -s−−−→ N
(
0, K

(t)
d , S

(t)
d

)
, (D.6)

where the FX-measurable covariance and relation matrices, K
(t)
d and S

(t)
d , are defined in

equations (D.8) and (D.9).

Proof. For the convergence in probability in equation (D.5), note that Proposition 1 with

the discrete definition (D.4) of π immediately yields the equivalent convergence

p∑
i=1

m∑
j=1

(
pψt(uj, τi)− ψt(uj, τi)

)2 P−→ 0.

To establish the FX-stable convergence in equation (D.6), we again use Proposition 1

with the discrete definition (D.4) of π. By Proposition A.2, the resulting FX-stable

convergence in L2
p(π) implies the FX-stable convergence of the marginals for every ht :=

(h1,t, . . . , hp,t)
T ∈ L2

p(π). Hence, we have that

∆
−1/2
t

p∑
i=1

m∑
j=1

hi,t(uj)
(
pψt(uj, τi)− ψt(uj, τi)

) FX -s−−−→ N
(
0, K̃

(t)
d (ht), S̃

(t)
d (ht)

)
, (D.7)
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where, using the definitions of κ(t,τ) and ς(t,τ) in equations (B.20) and (B.21),

K̃
(t)
d (ht) :=

p∑
i=1

ϱt,τi

m∑
j1=1

m∑
j2=1

hi,t(uj1)hi,t(uj2)κ
(t,τi)(uj1 , uj2),

S̃
(t)
d (ht) :=

p∑
i=1

ϱt,τi

m∑
j1=1

m∑
j2=1

hi,t(uj1)hi,t(uj2) ς
(t,τi)(uj1 , uj2).

Since the values hi,t(uj) may be chosen arbitrarily in C, a complex-valued version of

the Cramér-Wold Theorem yields the equivalence between the FX-stable CLTs (D.6)

and (D.7) when setting the block-diagonal covariance and relation matrices as

K
(t)
d :=


ϱt,τ1 K

(t,τ1)
d · · · 0

...
. . .

...

0 · · · ϱt,τp K
(t,τp)
d

 , (D.8)

S
(t)
d :=


ϱt,τ1 S

(t,τ1)
d · · · 0
...

. . .
...

0 · · · ϱt,τp S
(t,τp)
d

 , (D.9)

with

K
(t,τ)
d :=


κ(t,τ)(u1, u1) · · · κ(t,τ)(u1, um)

...
. . .

...

κ(t,τ)(um, u1) · · · κ(t,τ)(um, um)

 ,

S
(t,τ)
d :=


ς(t,τ)(u1, u1) · · · ς(t,τ)(u1, um)

...
. . .

...

ς(t,τ)(um, u1) · · · ς(t,τ)(um, um)

 .

In the discrete setting, the objective function of our optimization approach can be

equivalently represented using the Euclidean norm ∥·∥ as

QT (θ, {zt}t∈T) :=
∑
t∈T

wt ∥pΨt − at(θ)− bt(θ)zt∥2, (D.10)

where at(θ) and bt(θ) are compatible vector- and matrix-valued representations of αt(θ)

and βt(θ), respectively, having the same format as pΨt. Accordingly, we may express the

state estimator in equation (3.7) equivalently as

pxt(θ) =
(
bt(θ)

Hbt(θ)
)−1

bt(θ)
H
(
pΨt − at(θ)

)
. (D.11)
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Propositions 2 and 3 continue to hold without modifications, while the relevant ma-

trices AT and BT in equations (B.34) and (B.35) can be written as

AT :=


bH1 b1 · · · 0 bH1 ∇θF1
...

. . .
...

...

0 · · · bHT bT bHT ∇θFT

w1(∇θF1)
H b1 · · · wT (∇θFT )

H bT
∑

t∈Twt(∇θFt)
H ∇θFt

 , (D.12)

BT :=


bH1 K̃

(1)
d b1 · · · 0 w1b

H
1 K̃

(1)
d ∇θF1

...
. . .

...
...

0 · · · bHT K̃
(T )
d bT wT b

H
T K̃

(T )
d ∇θFT

w1(∇θF1)
HK̃

(1)
d b1 · · · wT (∇θFT )

HK̃
(T )
d bT

∑
t∈Tw

2
t (∇θFt)

HK̃
(t)
d ∇θFt

 , (D.13)

where K̃
(t)
d := ϱtK

(t)
d and ∇θFt is the appropriate matrix representation of ∇θFt.

D.3 Diagnostic tests

This sections develops diagnostic tests to formally evaluate the goodness-of-fit of an

estimated model with respect to observable quantities. Naturally within our framework,

a first class of tests considers log CCFs. In addition, we also develop a broad class of

tests based directly on option prices.

D.3.1 Diagnostic tests for log CCFs

In order to develop a battery of diagnostic tests for log CCFs, we first state an auxiliary

result that further extends Proposition 3.

Lemma D.1. Suppose the assumptions of Proposition 3 hold. Then, as n→ ∞, we have

∆−1/2



⟨pψ1 −ψ1,h1⟩
...

⟨pψT −ψT ,hT ⟩
px1 − x1

...

pxT − xT

pθ − θ0


FX -s−−−→ N

(
0, Cc

T (h), C
r
T (h)

)
(D.14)

for all h := (h1; . . . ;hT ) with ht := (h1,t, . . . , hp,t)
T ∈ L2

p(π), where the FX-measurable,

complex-valued covariance and relation matrices Cc
T (h) and Cr

T (h) are defined in equa-

tions (D.16) and (D.17), respectively.
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Proof. Using equation (B.33) together with the fact that qAT = AT + oP(1) for the real-

valued matrix AT defined in equation (B.34), we may write

⟨pψ1 −ψ1,h1⟩
...

⟨pψT −ψT ,hT ⟩
px1 − x1

...

pxT − xT

pθ − θ0


=

(
I 0

0
(
AT + oP(1)

)−1

)


⟨ξ1,h1⟩
...

⟨ξT ,hT ⟩
⟨ξ1,β1(θ0)⟩

...

⟨ξT ,βT (θ0)⟩∑
t∈Twt⟨ξt,∇θFt(θ0,xt)⟩


. (D.15)

From here on, we proceed as in the proof of Proposition 3 (cf. Section B.4). For this,

note that due to the stable CLT in Proposition 1, the scaled vector on the right-hand

side converges FX-stably to a complex Gaussian distribution, N (0, B̃c
T (h), B̃

r
T (h)), with

covariance and relation matrices defined as

B̃c
T (h) :=

(
B1,c

T (h) B2,c
T (h)H

B2,c
T (h) BT

)
, B̃r

T (h) :=

(
B1,r

T (h) B2,r
T (h)T

B2,r
T (h) BT

)
.

Here, the lower diagonal blocks of the covariance and relation matrices are given by

the real-valued matrix BT defined in equation (B.35). Moreover, using the covariance

operator K̃(t) in equation (B.36) and the analogously defined relation operator S̃(t), the

upper diagonal blocks obtain as

B1,c
T (h) :=


⟨h1, K̃(1)h1⟩ · · · 0

...
. . .

...

0 · · · ⟨hT , K̃(T )hT ⟩

 ,

B1,r
T (h) :=


⟨h1, S̃(1)h1⟩ · · · 0

...
. . .

...

0 · · · ⟨hT , S̃(T )hT ⟩

 .

Finally, the off-diagonal blocks of the covariance and relation matrices are determined by

B2,c
T (h) :=


⟨h1, K̃(1)β1⟩ · · · 0

...
. . .

...

0 · · · ⟨hT , K̃(T )βT ⟩
w1⟨h1, K̃(1)∇θF1⟩ · · · wT ⟨hT , K̃(T )∇θFT ⟩

 ,

B2,r
T (h) :=


⟨h1, S̃(1)β1⟩ · · · 0

...
. . .

...

0 · · · ⟨hT , S̃(T )βT ⟩
w1⟨h1, S̃(1)∇θF1⟩ · · · wT ⟨hT , S̃(T )∇θFT ⟩

 .
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Invoking the generalized Slutsky Theorem for stable convergence (e.g., Lemma 1.15.6

in van der Vaart and Wellner, 2023), equation (D.15) together with the above thus yields

the FX-stable CLT (D.14), where

Cc
T (h) :=

(
B1,c

T (h) B2,c
T (h)HA−T

T

A−1
T B2,c

T (h) A−1
T BTA

−T
T

)
, (D.16)

Cr
T (h) :=

(
B1,r

T (h) B2,r
T (h)TA−T

T

A−1
T B2,r

T (h) A−1
T BTA

−T
T

)
. (D.17)

With Lemma D.1 at hand, it is convenient to develop a large class of feasible diagnostic

tests for log CCFs, each comparing observed and model-implied functions evaluated at

the estimated parameter vector pθ and state vectors pxt. Essentially, the tests separately

account for the real and imaginary parts of log CCFs, integrated against prespecified test

functions in the Hilbert space L2
p(π) and aggregated across observation dates.

Proposition D.2. Suppose the assumptions of Proposition 4 hold. Then, as n→ ∞, we

have

∆−1/2
∑
t∈T

Re
〈
pψt −ψt(pθ, pxt),ht

〉
√

1
2
Re
(
pQT (h)

pCc
T (h)

pQT (h)
H + pQT (h)

pCr
T (h)

pQT (h)
T
) FX -s−−−→ N (0, 1), (D.18)

∆−1/2
∑
t∈T

Im
〈
pψt −ψt(pθ, pxt),ht

〉
√

1
2
Re
(
pQT (h)

pCc
T (h)

pQT (h)
H − pQT (h)

pCr
T (h)

pQT (h)
T
) FX -s−−−→ N (0, 1), (D.19)

for all h := (h1; . . . ;hT ) with ht := (h1,t, . . . , hp,t)
T ∈ L2

p(π), where pC
c
T (h) and

pCc
T (h) are

feasible versions of the covariance and relation matrices in Lemma D.1 and pQT (h) is a

feasible version of QT (h) in equation (D.20), all constructed as in Proposition 4.

Proof.

To simplify notation, define the unscaled random vector in the CLT (D.14) by ỸT (h)

and denote the feasible log CCF errors by pξt := pψt − ψt(pθ, pxt). By the delta method,

using the consistency of pθ and pxt according to Proposition 2, we have that

∆−1/2
∑
t∈T

〈
pξt,ht

〉
= ∆−1/2QT (h) ỸT (h) + oP(1)

for any h := (h1; . . . ;hT ) with ht := (h1,t, . . . , hp,t)
T ∈ L2

p(π). Here, we use AT defined in

equation (B.34) as well as

QT (h) :=
(
P1(h) −P2(h)A

−1
T

)
, P1(h) := 11×T ,

P2(h) :=
(
⟨β1,h1⟩ · · · ⟨βT ,hT ⟩

∑
t∈T⟨∇θFt,ht⟩

)
,

(D.20)
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implicitly depending on the true parameter vector θ0 and the true state vectors xt. Hence,

from Lemma D.1, we obtain the complex-valued, FX-stable CLT

∆−1/2
∑
t∈T

〈
pξt,ht

〉
FX -s−−−→ N

(
0, QT (h)C

c
T (h)QT (h)

H, QT (h)C
r
T (h)QT (h)

T
)
. (D.21)

The CLT (D.21) immediately yields the corresponding FX-stable CLTs for the real and

imaginary parts,

∆−1/2
∑
t∈T

Re
〈
pξt,ht

〉
FX -s−−−→ N

(
0, 1

2
Re
(
QT (h)C

c
T (h)QT (h)

H +QT (h)C
r
T (h)QT (h)

T
))
,

∆−1/2
∑
t∈T

Im
〈
pξt,ht

〉
FX -s−−−→ N

(
0, 1

2
Re
(
QT (h)C

c
T (h)QT (h)

H −QT (h)C
r
T (h)QT (h)

T
))
.

Replacing the infeasible Cc
T (h), C

r
T (h), and QT (h) with feasible versions (along the lines

of Proposition 4) such that pCc
T (h)

P−→ Cc
T (h),

pCr
T (h)

P−→ Cr
T (h), and

pQT (h)
P−→ QT (h),

the generalized Slutsky Theorem for stable convergence (e.g., Lemma 1.15.6 in van der

Vaart and Wellner, 2023) therefore yields the FX-stable CLTs (D.18) and (D.19).

D.3.2 Diagnostic tests for option prices

To develop a broad class of diagnostic tests for option prices, we consider the following

general option portfolios:

pΥt(ht) :=
∑
τ∈Tt

nt,τ∑
j=2

ht,τ (mj) pO(τ,mj)∆t,τ (j), (D.22)

where ht := (ht,τ1 , . . . , ht,τp)
T and the ht,τ are prespecified, real-valued functions. Provided

sufficient regularity, pΥt(ht) has limit as ∆t → 0 given by

Υt(ht) :=
∑
τ∈Tt

∫ ∞

0

ht,τ (m)O(τ,m) dm. (D.23)

To assure this convergence, we take the following set of real-valued functions with

bounded support, which restricted to the interior of the support are elements of some

Hölder space with exponent a > 1
2
:

H̃ :=
{
h : supp(h) bounded, h ∈ C0,a(int(supp(h))) for some a > 1

2

}
.

As our interest lies in testing options prices in the observed strike range, the class H̃ is

sufficiently general for our purposes. In particular, it accommodates indicator functions

over bounded strike intervals and truncated versions of well-behaved payoff functions. If

needed, the incorporation of finitely many discontinuities within the support is trivial.

For option portfolios pΥt(ht) as in equation (D.22) with ht ∈ H̃p, we have the following

auxiliary result that extends Proposition 3.
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Lemma D.2. Suppose the assumptions of Proposition 3 hold. Then, as n→ ∞, we have

∆−1/2



pΥ1(h1)−Υ1(h1)
...

pΥT (hT )−ΥT (hT )

px1 − x1

...

pxT − xT

pθ − θ0


FX -s−−−→ N

(
0, CΥ

T (h)
)

(D.24)

for all h := (h1; . . . ;hT ) with ht := (ht,τ1 , . . . , ht,τp)
T ∈ H̃p, where the FX-measurable,

real-valued covariance matrix CΥ
T (h) is defined in equation (D.29).

Proof. Again using equation (B.33) together with qAT = AT + oP(1) for the real-valued

matrix AT defined in equation (B.34), it holds that

pΥ1(h1)−Υ1(h1)
...

pΥT (hT )−ΥT (hT )

px1 − x1

...

pxT − xT

pθ − θ0


=

(
I 0

0
(
AT + oP(1)

)−1

)


ζΥ1 (h1)
...

ζΥT (hT )

⟨ξ1,β1(θ0)⟩
...

⟨ξT ,βT (θ0)⟩∑
t∈Twt⟨ξt,∇θFt(θ0,xt)⟩


, (D.25)

where we write ζΥt (ht) := pΥt(ht)−Υt(ht).

As in Lemma B.1, we may decompose ζΥt (ht) =
∑3

i=1 ζ
Υ,(i)
t (ht), where

ζ
Υ,(1)
t (ht) :=

∑
τ∈Tt

nt,τ∑
j=2

ht,τ (mj) ζt(τ,mj)∆t,τ (j), (D.26)

ζ
Υ,(2)
t (ht) := −

∑
τ∈Tt

(∫ mt,τ

−∞
ht,τ (m)Ot(τ,m) dm+

∫ ∞

mt,τ

ht,τ (m)Ot(τ,m) dm

)
, (D.27)

ζ
Υ,(3)
t (ht) :=

∑
τ∈Tt

nt,τ∑
j=2

∫ mj

mj−1

(
ht,τ (mj)Ot(τ,mj)− ht,τ (m)Ot(τ,m)

)
dm. (D.28)

Since the support of each ht,τ is bounded, Assumption 2(ii) immediately yields that

ζ
Υ,(2)
t (ht) = 0 for all large enough nt. Moreover, extending Lemma 2 in BLV, we have

that ζ
Υ,(3)
t (ht) = OP(∆

a
t ) for some a > 1

2
. The latter property follows using that∣∣∣∣∣

∫ mj

mj−1

(
ht,τ (mj)Ot(τ,mj)− ht,τ (m)Ot(τ,m)

)
dm

∣∣∣∣∣
≤
∫ mj

mj−1

(
|ht,τ (mj)− ht,τ (m)| Ot(τ,mj)dm+ |ht,τ (m)| |Ot(τ,mj)−Ot(τ,m)|

)
dm

≤ O(1)
(
∆1+a

t +∆2
t

)
≤ O(1)∆1+a

t ,
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uniformly across j. Here, the bound for the first term exploits that each ht,τ is a Hölder-a

function in the interior of its support, combined with the fact that option prices sat-

isfy Ot(τ,mj) ≤ 1; the bound for the second term uses that each ht,τ is uniformly

bounded and option prices are Lipschitz in m on the bounded support of the ht,τ , as

|Ot(τ, m̃)−Ot(τ,m)| ≤
∣∣em̃ − em

∣∣ ≤ C |m̃−m| by no-arbitrage considerations.

Therefore, analogous to Lemmas B.2 and B.3, the observation errors ζ
Υ,(1)
t (ht) de-

termine the asymptotic distribution. Following the reasoning there, we arrive at the

FX-stable CLT 

ζΥ1 (h1)
...

ζΥT (hT )

⟨pφ1 −φ1,β1(θ0)⟩
...

⟨pφT −φT ,βT (θ0)⟩∑
t∈Twt⟨pφt −φt,∇θFt(θ0,xt)⟩


FX -s−−−→ N

(
0, B̃Υ

T (h)
)

for some FX-measurable covariance matrix B̃Υ
T (h) that can be straightforwardly con-

structed. Subsequently invoking the functional delta method as in Proposition 3 together

with equation (D.25), we obtain the FX-stable CLT (D.25) for

CΥ
T (h) :=

(
B1,Υ

T (h) B2,Υ
T (h)TAT

T

ATB
2,Υ
T (h) ATBTA

T
T

)
(D.29)

in terms of the real-valued matrices AT and BT according to equations (B.34) and (B.35).

Moreover, we use the definitions

B1,Υ
T (h) :=


B1,Υ,(1)(h1) · · · 0

...
. . .

...

0 · · · B1,Υ,(T )(hT )

 ,

B2,Υ
T (h) :=


B2,Υ,(1)(h1,β1) · · · 0

...
. . .

...

0 · · · B2,Υ,(T )(hT ,βT )

w1B
2,Υ,(1)(h1,∇θF1) · · · wT B

2,Υ,(T )(hT ,∇θFT )

 ,

with

B1,Υ,(t)(ht) := ϱt
∑
τ∈Tt

ϱt,τ

∫
h2t,τ (m)σ2

t (τ,m)δt,τ (m)dm,

B2,Υ,(t)(ht, ft) := ϱt
∑
τ∈Tt

ϱt,τ

∫
J̃ (t,τ)(m, ft,τ )ht,τ (m)σ2

t (τ,m)δt,τ (m)dm,
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for any ft := (ft,τ1 , . . . , ft,τp)
T ∈ L2

p(π) and

J̃ (t,τ)(m, ft,τ ) :=

∫
ut,τ (u)

φt(u, τ)
e
(i u√

τκt,τ
−1)m

ft,τ (u)π(du).

In order to derive feasible diagnostic tests based on option portfolios, we first need

to strengthen Assumption 9. For this, we take supp(h) with h := (h1; . . . ;hT ) to denote

the (bounded) union of supp(ht,τ ) over all τ ∈ Tt, t ∈ T.

Assumption D.1. ∇θ O(m, τ ; θ, z) and ∇xO(m, τ ; θ, z) are continuous for all m ∈
supp(h) and τ ≤ T .

Lemma D.2 now allows to develop a large class of feasible diagnostic tests based on

option portfolios pΥt(ht) as in equation (D.22) with ht ∈ H̃p. Each such test compares a

time aggregate of observed and model-implied valuations of given option portfolios, using

the estimated parameter vector pθ and state vectors pxt.

Proposition D.3. Suppose the assumptions of Proposition 4 and Assumption D.1 hold.

Then, as n→ ∞, we have

∆−1/2
∑
t∈T

∑
τ∈Tt

nt,τ∑
j=2

ht,τ (mj)
(
pOt(τ,mj)−O(τ,mj; pθ, pxt)

)
∆t,τ (j)√

pQΥ
T (h)

pCΥ
T (h)

pQΥ
T (h)

T

FX -s−−−→ N (0, 1) (D.30)

for all h := (h1; . . . ;hT ) with ht := (ht,τ1 , . . . , ht,τp)
T ∈ H̃p, where pCΥ

T (h) is a feasible

version of the covariance matrix in Lemma D.2 and pQΥ
T (h) is a feasible version of QΥ

T (h)

in equation (D.31), both constructed as in Proposition 4.

Proof. To ease notation, define the unscaled numerator in equation (D.30) by YT (h) and

the unscaled random vector in the CLT (D.24) by ỸT (h). Using the consistency of pθ and

pxt by Proposition 2, the delta method yields the relation

∆−1/2 YT (h) = ∆−1/2QΥ
T (h) ỸT (h) + oP(1)

for a given h := (h1; . . . ;hT ) with ht := (ht,τ1 , . . . , ht,τp)
T ∈ H̃p, where

QΥ
T (h) :=

(
PΥ
1 (h) −PΥ

2 (h)A−1
T

)
, PΥ

1 (h) := 11×T ,

PΥ
2 (h) =

( ∑
τ∈T1

∫
h1,τ (m)∇T

xO(τ,m; θ0,x1)dm

· · ·
∑
τ∈TT

∫
hT,τ (m)∇T

xO(τ,m; θ0,xT )dm

∑
t∈T

∑
τ∈Tt

∫
ht,τ (m)∇T

θ O(τ,m; θ0,xt)dm

)
,

(D.31)
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depending on the true parameter vector θ0 and the true state vectors xt. Therefore,

Lemma D.2 yields the FX-stable CLT

∆−1/2 YT (h)
FX -s−−−→ N

(
0, QΥ

T (h)C
Υ
T (h)Q

Υ
T (h)

T
)
. (D.32)

It remains to construct feasible versions (along the lines of Proposition 4) of the

components of the covariance matrix in the CLT (D.32) such that pCΥ
T (h)

P−→ CΥ
T (h) and

pQΥ
T (h)

P−→ QΥ
T (h). For this, we specifically set pCΥ

T (h) in the form of equation (D.29) with

pAT and pBT as in equations (B.37) and (B.38) as well as the following estimators using

feasible option errors:

pB1,Υ,(t)(ht) :=
∑
τ∈Tt

∆t,τ

∆

nt,τ∑
j=2

h2t,τ (mj)pζ
2
t (τ,mj)

(∆t,τ (j))
2

∆t,τ

,

pB2,Υ,(t)(ht, ft) :=
∑
τ∈Tt

∆t,τ

∆

nt,τ∑
j=2

pJ (t,τ)(mj, ft,τ )ht,τ (mj)pζ
2
t (τ,mj)

(∆t,τ (j))
2

∆t,τ

.

Here, pJ (t,τ)(mj, ft,τ )
P−→ J̃ (t,τ)(mj, ft,τ ) uniformly across j when defining

pJ (t,τ)(m, ft,τ ) :=

∫
ut,τ (u)

pφt(u, τ)
e
(i u√

τκt,τ
−1)m

ft,τ (u)π(du).

Moreover, pQΥ
T (h) takes the form of equation (D.31) with pAT as well as the estimated

pθ and pxt. With the bounded support of the ht,τ , Assumption D.1, and the fact that

pAT
P−→ AT , we have that pQΥ

T (h)
P−→ QΥ

T (h).

Eventually, the generalized Slutsky Theorem for stable convergence (e.g., Lemma 1.15.6

in van der Vaart and Wellner, 2023) yields the FX-stable CLT (D.30).

A wide array of tests can be derived from Proposition D.3. For instance, similar

to AFT, we may consider simple indicator functions that select subsets of observation

dates and maturities as well as bounded intervals of log-moneyness strikes, leading to the

following corollary to Proposition D.3.

Corollary D.1. Suppose the assumptions of Proposition D.3 hold. Take some non-empty

subsets T̃ ⊂ T and T̃t ⊂ Tt as well as bounded intervals Mt,τ ⊂ R. Then, as n → ∞, we

have

∆−1/2
∑
t∈T̃

∑
τ∈T̃t

nt,τ∑
j=2

1Mt,τ(mj)
(
pOt(τ,mj)−O(τ,mj; pθ, pxt)

)
∆t,τ (j)√

pQΥ
T (h)

pCΥ
T (h)

pQΥ
T (h)

T

FX -s−−−→ N (0, 1)

for h := (h1; . . . ;hT ) with ht := (ht,τ1 , . . . , ht,τp)
T and ht,τ (m) = 1T̃(t)1T̃t(τ)1Mt,τ(m).
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Moreover, we can evaluate a broad class of (truncated) option portfolios, such as the

one underlying the squared VIX. To make this particularly relevant example explicit,

note that a corridor version of the squared VIX may be expressed as a special case of

equation (D.22),

yVIX2
t :=

∑
τ∈Tt

nt,τ∑
j=2

2wt(τ)1Mt,τ (mj) e
−mj pO(τ,mj)∆t,τ (j), (D.33)

where wt(τ) are deterministic time-interpolation weights depending on Tt and Mt,τ ⊂ R
is a bounded interval of log-moneyness strikes. Denoting by VIX2

t (θ, z) the associated

model-based counterpart, employing O(τ,mj; θ, z) instead of pO(τ,mj), we arrive at the

following corollary to Proposition D.3.

Corollary D.2. Suppose the assumptions of Proposition D.3 hold. Take some non-empty

subset T̃ ⊂ T as well as bounded intervals Mt,τ ⊂ R. Then, as n→ ∞, we have

∆−1/2
∑
t∈T̃

(
yVIX2

t − VIX2
t (
pθ, pxt)

)
√
pQΥ
T (h)

pCΥ
T (h)

pQΥ
T (h)

T

FX -s−−−→ N (0, 1)

for h := (h1; . . . ;hT ) with ht := (ht,τ1 , . . . , ht,τp)
T and ht,τ (m) = 21T̃(t)wt(τ)1Mt,τ (m) e−m.

E Additional results

E.1 Additional simulation results

E.1.1 One-factor model with Gaussian jump size distribution

We additionally illustrate the finite-sample performance of the developed estimation pro-

cedure using a one-factor model with Gaussian jumps in returns. In particular, we assume

the following process, referred to in shorthand as ‘SVGJ’, for the forward price Ft and

state xt = vt under the risk-neutral probability measure Q:

dFt

Ft

=
√
vtdW1,t +

∫
R2

(ex − 1) µ̃(dt, dx, dy), (E.1)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t +

∫
R2

y µ(dt, dx, dy), (E.2)

where the two Brownian motions W1,t and W2,t are assumed to be correlated with co-

efficient ρ, and the compensator for the jump measure is of the form ν̃t(dt, dx, dy) =

λ(xt)dt⊗ ν(dx, dy) with jump intensity λ(xt) = δvt and jump size measure

ν(dx, dy) =

{
1√
2πσj

exp

(
−(x− µj − ρjy)

2

2σ2
j

)
1

µv

exp

(
− y

µv

)
1{y>0}

}
dx⊗ dy. (E.3)
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The model specification has nine parameters that are collected in the parameter vector

θ = (κ, v̄, σ, ρ, δ, µj, σj, µv, ρj)
T. Furthermore, it embeds many popular one-factor option

pricing models as special cases, such as the Heston (1993), Pan (2002), Bates (1996), and

Duffie et al. (2000) models.

Similar to the model with double-exponential jumps, the SVGJ model in equations (E.1)

and (E.2) exhibits the same affine functional dependence of the log CCF ψt(u, τ) on the

state vector xt = vt as described in Section 4 with ‘jump transform’ of the form

χ(c1, c2) =
exp

(
µjc1 +

1
2
σ2
j c

2
1

)
1− µvc2 − ρjµvc1

. (E.4)

Table E.1: Monte Carlo results for the SVGJ model

κ v̄ σ ρ δ µj σj µv ρj MEv

true 2.0000 0.0200 0.2000 -0.9000 40.000 -0.0500 0.0400 0.0250 -0.5000 0.00000

mean 1.9974 0.0200 0.2002 -0.8994 39.884 -0.0502 0.0400 0.0250 -0.4991 -0.00001

MC std 0.0179 0.0002 0.0012 0.0039 1.230 0.0017 0.0004 0.0003 0.0217 0.00008

As. std 0.0181 0.0002 0.0012 0.0042 1.187 0.0017 0.0004 0.0003 0.0208 0.00007

q10 1.9757 0.0198 0.1988 -0.9037 38.314 -0.0524 0.0395 0.0246 -0.5262 -0.00006

q50 1.9975 0.0200 0.2001 -0.8995 39.887 -0.0501 0.0400 0.0250 -0.4995 -0.00000

q90 2.0192 0.0203 0.2016 -0.8950 41.390 -0.0481 0.0404 0.0255 -0.4709 0.00005

Note: This table provides Monte Carlo simulation results for the SVGJ model. For each parameter, we report the true

value, the Monte Carlo mean and standard deviation, the asymptotic standard deviation, and the 10th, 50th and 90th

Monte Carlo percentiles. The last column reports the same descriptive statistics for the mean errors of the estimated state

(MEv).

Table E.2: Monte Carlo results for the SVGJ model with limited strike range

κ v̄ σ ρ δ µj σj µv ρj MEv

true 2.0000 0.0200 0.2000 -0.9000 40.000 -0.0500 0.0400 0.0250 -0.5000 0.00000

mean 1.9947 0.0201 0.2004 -0.8987 39.738 -0.0504 0.0399 0.0250 -0.4986 -0.00001

MC std 0.0174 0.0002 0.0012 0.0036 1.204 0.0016 0.0003 0.0003 0.0211 0.00009

As. std 0.0183 0.0002 0.0012 0.0042 1.199 0.0018 0.0004 0.0003 0.0208 0.00007

q10 1.9744 0.0198 0.1991 -0.9027 38.293 -0.0524 0.0395 0.0246 -0.5240 -0.00007

q50 1.9956 0.0200 0.2003 -0.8989 39.787 -0.0502 0.0399 0.0250 -0.4993 0.00000

q90 2.0149 0.0203 0.2018 -0.8945 41.161 -0.0484 0.0403 0.0255 -0.4719 0.00005

Note: The log-moneyness levels are simulated between mt,τ = −11 × κt,τ
√
τ and mt,τ = 3 × κt,τ

√
τ . For the rest, see

description of Table E.1.

The main simulation setup mirrors that of the SVEJ specification described in Sec-

tion 4. Additionally, we also consider a setup with a more realistic strike range, in

which the log-moneyness levels are simulated between mt,τ = −11 × κt,τ
√
τ and mt,τ =

3 × κt,τ
√
τ . The Monte Carlo results are provided in Tables E.1 and E.2, respectively,

and indicate a very good finite-sample performance in both cases.
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E.1.2 Two-factor models

As an extension of the one-factor models in Section 4 and Section E.1.1, we now consider

two two-factor option pricing models in which we have an additional factor for the jump

intensity, which follows a Hawkes process.

First, we consider an extension of the SVGJ model with Gaussian jump size distri-

bution. Specifically, for the model that is henceforth referred to as ‘SVHGJ’, we assume

the following dynamics for the forward price Ft and state xt = (vt, λt)
T under Q:

dFt

Ft

=
√
vtdW1,t +

∫
R3

(ex − 1) µ̃(dt, dx, dy, dz), (E.5)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t +

∫
R3

y µ(dt, dx, dy, dz), (E.6)

dλt = κλ(λ̄− λt)dt+

∫
R3

z µ(dt, dx, dy, dz). (E.7)

The compensator for the jump measure is of the form ν̃t(dt, dx, dy, dz) = λ(xt)dt ⊗
ν(dx, dy, dz) with jump intensity λ(xt) = λt and jump size measure

ν(dx, dy, dz) =

{
1√
2πσj

exp

(
−(x− µj − ρjy)

2

2σ2
j

)

× 1

µv

exp

(
− y

µv

)
1{y>0} ×

1

µλ

exp

(
− z

µλ

)
1{z>0}

}
dx⊗ dy ⊗ dz.

The first two processes of the SVHGJ model are the same as in the one-factor spec-

ification introduced in Section E.1.1. The third process introduces a Hawkes jump in-

tensity based on an exponential kernel. This additional factor decouples the dynamic

of the stochastic jump intensity from the variance process, further enriching the model’s

flexibility to capture the clustering of jumps. Like the SVGJ model, the two-factor spec-

ification also belongs to the class of AJD models and can be seen as an extension of the

models considered in Boswijk et al. (2016), Du and Luo (2019), and a univariate version

of the model in Boswijk et al. (2023). The affine functional dependence of the log CCF

ψt(u, τ) on the state vector can be written as

ψt(u, τ) = α
(

u√
τκt,τ

, τ ; θ
)
+ β1

(
u√
τκt,τ

, τ ; θ
)
vt + β2

(
u√
τκt,τ

, τ ; θ
)
λt,

where the functional coefficients are given as solutions to the complex-valued ODE system:
α̇(u, t) = κv̄β1(u, t) + κλλ̄β2(u, t),

β̇1(u, t) = − iu
2
− κβ1(u, t)− u2

2
+ iuρσβ1(u, t) +

1
2
σ2β2

1(u, t),

β̇2(u, t) = −iu (χ(1, 0, 0)− 1)− κλβ2(u, t) + (χ(iu, β1(u, t), β2(u, t))− 1) ,

with initial conditions α(u, 0) = β1(u, 0) = β2(u, 0) = 0 and ‘jump transform’ of the form

χ(c1, c2, c3) =
exp

(
µjc1 +

1
2
σ2
j c

2
1

)
1− µvc2 − ρjµvc1

× 1

1− µλc3
. (E.8)
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Table E.3: Monte Carlo results for the two-factor SVHGJ model

κ v̄ σ ρ µj σj

true 2.0000 0.02000 0.2000 -0.9000 -0.0500 0.0400

mean 2.0000 0.01999 0.2000 -0.9001 -0.0498 0.0400

MC std 0.0027 0.00005 0.0003 0.0011 0.0013 0.0002

As. std 0.0024 0.00004 0.0003 0.0013 0.0011 0.0001

q10 1.9969 0.01993 0.1996 -0.9015 -0.0514 0.0397

q50 1.9999 0.01999 0.2000 -0.9001 -0.0498 0.0400

q90 2.0034 0.02005 0.2003 -0.8987 -0.0482 0.0402

µv ρj κλ λ̄ µλ MEv MEλ

true 0.0250 -0.5000 2.5000 0.3000 2.0000 0.00000 0.0000

mean 0.0249 -0.5066 2.5059 0.3009 2.0045 0.00000 -0.0033

MC. std 0.0004 0.0347 0.0256 0.0034 0.0244 0.00003 0.0280

As. std 0.0004 0.0284 0.0193 0.0024 0.0196 0.00011 0.0226

q10 0.0244 -0.5476 2.4759 0.2968 1.9767 -0.00002 -0.0222

q50 0.0249 -0.5057 2.5050 0.3008 2.0033 0.00000 -0.0026

q90 0.0254 -0.4654 2.5371 0.3053 2.0343 0.00003 0.0173

Note: This table provides Monte Carlo simulation results for the two-factor SVHGJ model. For each parameter,

we report the true value, the Monte Carlo mean and standard deviation, the asymptotic standard deviation,

and the 10th, 50th and 90th Monte Carlo percentiles. The last column reports the same descriptive statistics

for the mean errors of the estimated volatility and intensity states, MEv and MEλ, respectively.

Next to the two-factor model with Gaussian jump sizes, we also consider a specification

with double-exponential jump sizes in returns and co-jumps in volatility and intensity. In

particular, we assume the following process, referred to in shorthand as ‘SVHEJ’, under

the risk-neutral probability measure Q:

dFt

Ft

=
√
vtdW1,t +

∫
R
(ex − 1) µ̃(dt, dx), (E.9)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t + µv

∫
R
x21{x<0} µ(dt, dx), (E.10)

dλt = κλ(λ̄− λt)dt+ µλ

∫
R
x21{x<0} µ(dt, dx). (E.11)

The model naturally extends the one-factor SVEJ specification in Section 4 with a similar

dynamic for the intensity as for the variance. Unlike in the SVHGJ model, here the jump

sizes in intensity are made proportional to the square of negative jump sizes in returns.

Nevertheless, the affine functional structure of the log CCF is similar to the SVHGJ

model described above.

The simulation setup for both two-factor models mirrors that of the one-factor spec-

ifications, with the same parameter values for the underlying process and stochastic

volatility. The parameters for the jump intensity process are similar to the estimates for

the univariate model in Boswijk et al. (2023). The Monte Carlo results for the SVHGJ

and SVHEJ models are provided in Tables E.3 and E.4, respectively. Like the results for
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Table E.4: Monte Carlo results for the two-factor SVHEJ model

κ v̄ σ ρ µv p

true 2.0000 0.02000 0.2000 -0.8000 3.5000 0.7000

mean 2.0002 0.01999 0.1999 -0.8002 3.5002 0.6996

MC std 0.0020 0.00003 0.0004 0.0012 0.0216 0.0056

As. std 0.0014 0.00002 0.0002 0.0009 0.0151 0.0061

q10 1.9981 0.01997 0.1996 -0.8015 3.4767 0.6934

q50 2.0003 0.01999 0.1999 -0.8002 3.4993 0.6999

q90 2.0025 0.02002 0.2003 -0.7991 3.5271 0.7053

η− η+ κλ λ̄ µλ MEv MEλ

true 0.0700 0.0400 2.5000 0.3000 300.00 0.00000 0.0000

mean 0.0699 0.0400 2.5029 0.3009 300.91 0.00003 -0.0077

MC std 0.0004 0.0005 0.0158 0.0034 6.277 0.00117 0.3023

As. std 0.0002 0.0005 0.0088 0.0030 4.396 0.00011 0.0448

q10 0.0695 0.0394 2.4845 0.2970 293.68 -0.00002 -0.0164

q50 0.0699 0.0400 2.5019 0.3008 300.72 0.00000 -0.0016

q90 0.0703 0.0405 2.5230 0.3046 308.34 0.00002 0.0123

Note: This table provides Monte Carlo simulation results for the two-factor SVHEJ model. For each parameter,

we report the true value, the Monte Carlo mean and standard deviation, the asymptotic standard deviation,

and the 10th, 50th and 90th Monte Carlo percentiles. The last column reports the same descriptive statistics

for the mean errors of the estimated volatility and intensity states, MEv and MEλ, respectively.

the one-factor specifications, the parameter estimators in the two-factor models, includ-

ing those related to the Hawkes jump intensity, exhibit good finite-sample performance.

We also observe that both state variables – the stochastic variance and the jump intensity

– are estimated quite accurately.

E.2 Additional empirical results

We further provide additional empirical results for the one- and two-factor models with

Gaussian jump size distributions as introduced in Section E.1.

The results for the one-factor SVGJ model are reported in Table E.5. The parameter

estimates of the SVGJ model are broadly in line with those found in the related literature.

The jump correlation parameter ρj is estimated close to -1, indicating an almost perfect

correlation between jump sizes in volatility and returns. Such a feature is often incorpo-

rated in the models with exponential jump sizes in returns, such as the one considered in

Section 5, where the variance jump sizes are made proportional to the squared (negative)

jump sizes in returns (see also, e.g., AFT, Andersen et al., 2015b, 2020).

The results for the two-factor SVHGJ model are reported in Table E.6. The parameter

estimates for the jump intensity are similar to those obtained in the SVHEJ specification

result in Section 5.
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Table E.5: Parameter estimates of the SVGJ model

κ v̄ σ ρ δ µj σj µv ρj

pθ 3.0878 0.0098 0.1335 -1.000 76.12 -0.0302 0.0720 0.0373 -1.000

s.e. 0.0215 0.0001 0.0050 0.035 1.096 0.0012 0.0005 0.0005 0.029

Note: This table reports the parameter estimates and the standard errors for the one-factor SVGJ model given

the scale s = 0.6.

Table E.6: Parameter estimates of the SVHGJ model

κ v̄ σ ρ µj σj µv ρj κλ λ̄ µλ

pθ 2.1773 0.0279 0.3485 -0.7840 -0.0946 0.0003 0.1489 -0.5506 1.2312 0.0115 1.1313

s.e. 0.0113 0.0001 0.0020 0.0028 0.0023 0.1256 0.0032 0.0159 0.0227 0.0019 0.0300

Note: This table reports the parameter estimates and the standard errors for the two-factor SVHGJ model given the scale

s = 0.5.
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